![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > n0p | Structured version Visualization version GIF version |
Description: A polynomial with a nonzero coefficient is not the zero polynomial. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
n0p | ⊢ ((𝑃 ∈ (Poly‘ℤ) ∧ 𝑁 ∈ ℕ0 ∧ ((coeff‘𝑃)‘𝑁) ≠ 0) → 𝑃 ≠ 0𝑝) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6890 | . . . . . . . 8 ⊢ (𝑃 = 0𝑝 → (coeff‘𝑃) = (coeff‘0𝑝)) | |
2 | coe0 26005 | . . . . . . . . 9 ⊢ (coeff‘0𝑝) = (ℕ0 × {0}) | |
3 | 2 | a1i 11 | . . . . . . . 8 ⊢ (𝑃 = 0𝑝 → (coeff‘0𝑝) = (ℕ0 × {0})) |
4 | 1, 3 | eqtrd 2770 | . . . . . . 7 ⊢ (𝑃 = 0𝑝 → (coeff‘𝑃) = (ℕ0 × {0})) |
5 | 4 | fveq1d 6892 | . . . . . 6 ⊢ (𝑃 = 0𝑝 → ((coeff‘𝑃)‘𝑁) = ((ℕ0 × {0})‘𝑁)) |
6 | 5 | adantl 480 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑃 = 0𝑝) → ((coeff‘𝑃)‘𝑁) = ((ℕ0 × {0})‘𝑁)) |
7 | id 22 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ0) | |
8 | c0ex 11212 | . . . . . . . 8 ⊢ 0 ∈ V | |
9 | 8 | fvconst2 7206 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → ((ℕ0 × {0})‘𝑁) = 0) |
10 | 7, 9 | syl 17 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → ((ℕ0 × {0})‘𝑁) = 0) |
11 | 10 | adantr 479 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑃 = 0𝑝) → ((ℕ0 × {0})‘𝑁) = 0) |
12 | 6, 11 | eqtrd 2770 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑃 = 0𝑝) → ((coeff‘𝑃)‘𝑁) = 0) |
13 | 12 | 3ad2antl2 1184 | . . 3 ⊢ (((𝑃 ∈ (Poly‘ℤ) ∧ 𝑁 ∈ ℕ0 ∧ ((coeff‘𝑃)‘𝑁) ≠ 0) ∧ 𝑃 = 0𝑝) → ((coeff‘𝑃)‘𝑁) = 0) |
14 | neneq 2944 | . . . . 5 ⊢ (((coeff‘𝑃)‘𝑁) ≠ 0 → ¬ ((coeff‘𝑃)‘𝑁) = 0) | |
15 | 14 | adantr 479 | . . . 4 ⊢ ((((coeff‘𝑃)‘𝑁) ≠ 0 ∧ 𝑃 = 0𝑝) → ¬ ((coeff‘𝑃)‘𝑁) = 0) |
16 | 15 | 3ad2antl3 1185 | . . 3 ⊢ (((𝑃 ∈ (Poly‘ℤ) ∧ 𝑁 ∈ ℕ0 ∧ ((coeff‘𝑃)‘𝑁) ≠ 0) ∧ 𝑃 = 0𝑝) → ¬ ((coeff‘𝑃)‘𝑁) = 0) |
17 | 13, 16 | pm2.65da 813 | . 2 ⊢ ((𝑃 ∈ (Poly‘ℤ) ∧ 𝑁 ∈ ℕ0 ∧ ((coeff‘𝑃)‘𝑁) ≠ 0) → ¬ 𝑃 = 0𝑝) |
18 | 17 | neqned 2945 | 1 ⊢ ((𝑃 ∈ (Poly‘ℤ) ∧ 𝑁 ∈ ℕ0 ∧ ((coeff‘𝑃)‘𝑁) ≠ 0) → 𝑃 ≠ 0𝑝) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∧ w3a 1085 = wceq 1539 ∈ wcel 2104 ≠ wne 2938 {csn 4627 × cxp 5673 ‘cfv 6542 0cc0 11112 ℕ0cn0 12476 ℤcz 12562 0𝑝c0p 25418 Polycply 25933 coeffccoe 25935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-inf2 9638 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-of 7672 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-map 8824 df-pm 8825 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-inf 9440 df-oi 9507 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-z 12563 df-uz 12827 df-rp 12979 df-fz 13489 df-fzo 13632 df-fl 13761 df-seq 13971 df-exp 14032 df-hash 14295 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-clim 15436 df-rlim 15437 df-sum 15637 df-0p 25419 df-ply 25937 df-coe 25939 df-dgr 25940 |
This theorem is referenced by: etransc 45297 |
Copyright terms: Public domain | W3C validator |