Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  n0p Structured version   Visualization version   GIF version

Theorem n0p 42550
Description: A polynomial with a nonzero coefficient is not the zero polynomial. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Assertion
Ref Expression
n0p ((𝑃 ∈ (Poly‘ℤ) ∧ 𝑁 ∈ ℕ0 ∧ ((coeff‘𝑃)‘𝑁) ≠ 0) → 𝑃 ≠ 0𝑝)

Proof of Theorem n0p
StepHypRef Expression
1 fveq2 6767 . . . . . . . 8 (𝑃 = 0𝑝 → (coeff‘𝑃) = (coeff‘0𝑝))
2 coe0 25405 . . . . . . . . 9 (coeff‘0𝑝) = (ℕ0 × {0})
32a1i 11 . . . . . . . 8 (𝑃 = 0𝑝 → (coeff‘0𝑝) = (ℕ0 × {0}))
41, 3eqtrd 2778 . . . . . . 7 (𝑃 = 0𝑝 → (coeff‘𝑃) = (ℕ0 × {0}))
54fveq1d 6769 . . . . . 6 (𝑃 = 0𝑝 → ((coeff‘𝑃)‘𝑁) = ((ℕ0 × {0})‘𝑁))
65adantl 482 . . . . 5 ((𝑁 ∈ ℕ0𝑃 = 0𝑝) → ((coeff‘𝑃)‘𝑁) = ((ℕ0 × {0})‘𝑁))
7 id 22 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
8 c0ex 10957 . . . . . . . 8 0 ∈ V
98fvconst2 7072 . . . . . . 7 (𝑁 ∈ ℕ0 → ((ℕ0 × {0})‘𝑁) = 0)
107, 9syl 17 . . . . . 6 (𝑁 ∈ ℕ0 → ((ℕ0 × {0})‘𝑁) = 0)
1110adantr 481 . . . . 5 ((𝑁 ∈ ℕ0𝑃 = 0𝑝) → ((ℕ0 × {0})‘𝑁) = 0)
126, 11eqtrd 2778 . . . 4 ((𝑁 ∈ ℕ0𝑃 = 0𝑝) → ((coeff‘𝑃)‘𝑁) = 0)
13123ad2antl2 1185 . . 3 (((𝑃 ∈ (Poly‘ℤ) ∧ 𝑁 ∈ ℕ0 ∧ ((coeff‘𝑃)‘𝑁) ≠ 0) ∧ 𝑃 = 0𝑝) → ((coeff‘𝑃)‘𝑁) = 0)
14 neneq 2949 . . . . 5 (((coeff‘𝑃)‘𝑁) ≠ 0 → ¬ ((coeff‘𝑃)‘𝑁) = 0)
1514adantr 481 . . . 4 ((((coeff‘𝑃)‘𝑁) ≠ 0 ∧ 𝑃 = 0𝑝) → ¬ ((coeff‘𝑃)‘𝑁) = 0)
16153ad2antl3 1186 . . 3 (((𝑃 ∈ (Poly‘ℤ) ∧ 𝑁 ∈ ℕ0 ∧ ((coeff‘𝑃)‘𝑁) ≠ 0) ∧ 𝑃 = 0𝑝) → ¬ ((coeff‘𝑃)‘𝑁) = 0)
1713, 16pm2.65da 814 . 2 ((𝑃 ∈ (Poly‘ℤ) ∧ 𝑁 ∈ ℕ0 ∧ ((coeff‘𝑃)‘𝑁) ≠ 0) → ¬ 𝑃 = 0𝑝)
1817neqned 2950 1 ((𝑃 ∈ (Poly‘ℤ) ∧ 𝑁 ∈ ℕ0 ∧ ((coeff‘𝑃)‘𝑁) ≠ 0) → 𝑃 ≠ 0𝑝)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  {csn 4562   × cxp 5583  cfv 6427  0cc0 10859  0cn0 12221  cz 12307  0𝑝c0p 24821  Polycply 25333  coeffccoe 25335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579  ax-inf2 9387  ax-cnex 10915  ax-resscn 10916  ax-1cn 10917  ax-icn 10918  ax-addcl 10919  ax-addrcl 10920  ax-mulcl 10921  ax-mulrcl 10922  ax-mulcom 10923  ax-addass 10924  ax-mulass 10925  ax-distr 10926  ax-i2m1 10927  ax-1ne0 10928  ax-1rid 10929  ax-rnegex 10930  ax-rrecex 10931  ax-cnre 10932  ax-pre-lttri 10933  ax-pre-lttrn 10934  ax-pre-ltadd 10935  ax-pre-mulgt0 10936  ax-pre-sup 10937
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5485  df-eprel 5491  df-po 5499  df-so 5500  df-fr 5540  df-se 5541  df-we 5542  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-pred 6196  df-ord 6263  df-on 6264  df-lim 6265  df-suc 6266  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-isom 6436  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-of 7524  df-om 7704  df-1st 7821  df-2nd 7822  df-frecs 8085  df-wrecs 8116  df-recs 8190  df-rdg 8229  df-1o 8285  df-er 8486  df-map 8605  df-pm 8606  df-en 8722  df-dom 8723  df-sdom 8724  df-fin 8725  df-sup 9189  df-inf 9190  df-oi 9257  df-card 9685  df-pnf 10999  df-mnf 11000  df-xr 11001  df-ltxr 11002  df-le 11003  df-sub 11195  df-neg 11196  df-div 11621  df-nn 11962  df-2 12024  df-3 12025  df-n0 12222  df-z 12308  df-uz 12571  df-rp 12719  df-fz 13228  df-fzo 13371  df-fl 13500  df-seq 13710  df-exp 13771  df-hash 14033  df-cj 14798  df-re 14799  df-im 14800  df-sqrt 14934  df-abs 14935  df-clim 15185  df-rlim 15186  df-sum 15386  df-0p 24822  df-ply 25337  df-coe 25339  df-dgr 25340
This theorem is referenced by:  etransc  43783
  Copyright terms: Public domain W3C validator