Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.68 | Structured version Visualization version GIF version |
Description: Theorem *2.68 of [WhiteheadRussell] p. 108. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm2.68 | ⊢ (((𝜑 → 𝜓) → 𝜓) → (𝜑 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jarl 125 | . 2 ⊢ (((𝜑 → 𝜓) → 𝜓) → (¬ 𝜑 → 𝜓)) | |
2 | 1 | orrd 859 | 1 ⊢ (((𝜑 → 𝜓) → 𝜓) → (𝜑 ∨ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 |
This theorem is referenced by: dfor2 898 |
Copyright terms: Public domain | W3C validator |