Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orrd | Structured version Visualization version GIF version |
Description: Deduce disjunction from implication. (Contributed by NM, 27-Nov-1995.) |
Ref | Expression |
---|---|
orrd.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Ref | Expression |
---|---|
orrd | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orrd.1 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
2 | pm2.54 848 | . 2 ⊢ ((¬ 𝜓 → 𝜒) → (𝜓 ∨ 𝜒)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 |
This theorem is referenced by: orc 863 olc 864 pm2.68 897 pm4.79 1000 19.30 1885 axi12 2707 r19.30 3265 r19.30OLD 3266 sspss 4030 eqoreldif 4617 pwpw0 4743 sssn 4756 pwsnOLD 4829 unissint 4900 disjiund 5060 disjxiun 5067 otsndisj 5427 otiunsndisj 5428 pwssun 5476 isso2i 5529 ordtr3 6296 ordtri2or 6346 unizlim 6368 fvclss 7097 orduniorsuc 7652 ordzsl 7667 nn0suc 7716 xpexr 7739 odi 8372 swoso 8489 erdisj 8508 ordtypelem7 9213 wemapsolem 9239 domwdom 9263 iscard3 9780 ackbij1lem18 9924 fin56 10080 entric 10244 gchdomtri 10316 inttsk 10461 r1tskina 10469 psslinpr 10718 ssxr 10975 letric 11005 mul0or 11545 mulge0b 11775 zeo 12336 uzm1 12545 xrletri 12816 supxrgtmnf 12992 sq01 13868 ruclem3 15870 prm2orodd 16324 phiprmpw 16405 pleval2i 17969 irredn0 19860 drngmul0or 19927 lvecvs0or 20285 lssvs0or 20287 lspsnat 20322 lsppratlem1 20324 domnchr 20648 fctop 22062 cctop 22064 ppttop 22065 clslp 22207 restntr 22241 cnconn 22481 txindis 22693 txconn 22748 isufil2 22967 ufprim 22968 alexsubALTlem3 23108 pmltpc 24519 iundisj2 24618 limcco 24962 fta1b 25239 aalioulem2 25398 abelthlem2 25496 logreclem 25817 dchrfi 26308 2sqb 26485 tgbtwnconn1 26840 legov3 26863 coltr 26912 colline 26914 tglowdim2ln 26916 ragflat3 26971 ragperp 26982 lmieu 27049 lmicom 27053 lmimid 27059 numedglnl 27417 nvmul0or 28913 hvmul0or 29288 atomli 30645 atordi 30647 iundisj2f 30830 iundisj2fi 31020 mxidlprm 31542 ssmxidl 31544 zarclssn 31725 signsply0 32430 pthisspthorcycl 32990 cvmsdisj 33132 nepss 33564 dfon2lem6 33670 soseq 33730 nosepdmlem 33813 noetasuplem4 33866 btwnconn1lem13 34328 wl-exeq 35620 eqvreldisj 36654 lsator0sp 36942 lkreqN 37111 2at0mat0 37466 trlator0 38112 dochkrshp4 39330 dochsat0 39398 lcfl6 39441 rp-fakeimass 41017 frege124d 41258 clsk1independent 41545 mnringmulrcld 41735 pm10.57 41878 icccncfext 43318 fourierdlem70 43607 ichnreuop 44812 uzlidlring 45375 nneop 45760 mo0sn 46049 |
Copyright terms: Public domain | W3C validator |