| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orrd | Structured version Visualization version GIF version | ||
| Description: Deduce disjunction from implication. (Contributed by NM, 27-Nov-1995.) |
| Ref | Expression |
|---|---|
| orrd.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| orrd | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orrd.1 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
| 2 | pm2.54 852 | . 2 ⊢ ((¬ 𝜓 → 𝜒) → (𝜓 ∨ 𝜒)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: orc 867 olc 868 pm2.68 900 pm4.79 1005 19.30 1882 axi12 2703 r19.30 3100 sspss 4051 eqoreldif 4637 pwpw0 4764 sssn 4777 unissint 4922 disjiund 5084 disjxiun 5090 otsndisj 5462 otiunsndisj 5463 pwssun 5511 isso2i 5564 ordtr3 6357 ordtri2or 6411 unizlim 6435 fvclss 7181 orduniorsuc 7766 ordzsl 7781 nn0suc 7830 xpexr 7854 soseq 8095 odi 8500 swoso 8662 erdisj 8685 ordtypelem7 9417 wemapsolem 9443 domwdom 9467 iscard3 9991 ackbij1lem18 10134 fin56 10291 entric 10455 gchdomtri 10527 inttsk 10672 r1tskina 10680 psslinpr 10929 1re 11119 ssxr 11189 letric 11220 mul0or 11764 mulge0b 11999 zeo 12565 uzm1 12772 xrletri 13054 supxrgtmnf 13230 sq01 14134 ruclem3 16144 prm2orodd 16604 phiprmpw 16689 pleval2i 18242 chnind 18529 irredn0 20343 drngmul0orOLD 20678 lvecvs0or 21047 lssvs0or 21049 lspsnat 21084 lsppratlem1 21086 domnchr 21471 fctop 22920 cctop 22922 ppttop 22923 clslp 23064 restntr 23098 cnconn 23338 txindis 23550 txconn 23605 isufil2 23824 ufprim 23825 alexsubALTlem3 23965 pmltpc 25379 iundisj2 25478 limcco 25822 fta1b 26105 aalioulem2 26269 abelthlem2 26370 logreclem 26700 dchrfi 27194 2sqb 27371 nosepdmlem 27623 noetasuplem4 27676 sletric 27704 muls0ord 28125 tgbtwnconn1 28554 legov3 28577 coltr 28626 colline 28628 tglowdim2ln 28630 ragflat3 28685 ragperp 28696 lmieu 28763 lmicom 28767 lmimid 28773 numedglnl 29124 pthisspthorcycl 29782 nvmul0or 30632 hvmul0or 31007 atomli 32364 atordi 32366 iundisj2f 32572 iundisj2fi 32784 gsumfs2d 33042 mxidlprm 33442 ssmxidl 33446 qsdrng 33469 zarclssn 33907 signsply0 34585 cvmsdisj 35335 nepss 35783 dfon2lem6 35851 btwnconn1lem13 36164 wl-exeq 37599 eqvreldisj 38731 lsator0sp 39121 lkreqN 39290 2at0mat0 39645 trlator0 40291 dochkrshp4 41509 dochsat0 41577 lcfl6 41620 expeqidd 42444 sn-remul0ord 42527 rp-fakeimass 43630 frege124d 43879 clsk1independent 44164 mnringmulrcld 44346 pm10.57 44489 icccncfext 46010 fourierdlem70 46299 ichnreuop 47597 uzlidlring 48360 nneop 48652 mo0sn 48941 euendfunc2 49653 |
| Copyright terms: Public domain | W3C validator |