![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orrd | Structured version Visualization version GIF version |
Description: Deduce disjunction from implication. (Contributed by NM, 27-Nov-1995.) |
Ref | Expression |
---|---|
orrd.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Ref | Expression |
---|---|
orrd | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orrd.1 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
2 | pm2.54 847 | . 2 ⊢ ((¬ 𝜓 → 𝜒) → (𝜓 ∨ 𝜒)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 208 df-or 843 |
This theorem is referenced by: orc 862 olc 863 pm2.68 895 pm4.79 998 19.30 1867 axi12 2767 axi12OLD 2768 axbndOLD 2770 r19.30 3301 sspss 4003 eqoreldif 4535 pwpw0 4659 sssn 4672 pwsnALT 4744 unissint 4812 disjiund 4959 disjxiun 4965 otsndisj 5307 otiunsndisj 5308 pwssun 5351 isso2i 5403 ordtr3 6118 ordtri2or 6168 unizlim 6189 fvclss 6873 orduniorsuc 7408 ordzsl 7423 nn0suc 7469 xpexr 7486 odi 8062 swoso 8179 erdisj 8198 ordtypelem7 8841 wemapsolem 8867 domwdom 8891 iscard3 9372 ackbij1lem18 9512 fin56 9668 entric 9832 gchdomtri 9904 inttsk 10049 r1tskina 10057 psslinpr 10306 ssxr 10563 letric 10593 mul0or 11134 mulge0b 11364 zeo 11922 uzm1 12129 xrletri 12400 supxrgtmnf 12576 sq01 13440 ruclem3 15423 prm2orodd 15868 phiprmpw 15946 pleval2i 17407 irredn0 19147 drngmul0or 19217 lvecvs0or 19574 lssvs0or 19576 lspsnat 19611 lsppratlem1 19613 domnchr 20365 fctop 21300 cctop 21302 ppttop 21303 clslp 21444 restntr 21478 cnconn 21718 txindis 21930 txconn 21985 isufil2 22204 ufprim 22205 alexsubALTlem3 22345 pmltpc 23738 iundisj2 23837 limcco 24178 fta1b 24450 aalioulem2 24609 abelthlem2 24707 logreclem 25025 dchrfi 25517 2sqb 25694 tgbtwnconn1 26047 legov3 26070 coltr 26119 colline 26121 tglowdim2ln 26123 ragflat3 26178 ragperp 26189 lmieu 26256 lmicom 26260 lmimid 26266 numedglnl 26616 nvmul0or 28114 hvmul0or 28489 atomli 29846 atordi 29848 iundisj2f 30026 iundisj2fi 30202 signsply0 31434 pthisspthorcycl 31985 cvmsdisj 32127 nepss 32558 dfon2lem6 32643 soseq 32707 nosepdmlem 32798 noetalem3 32830 btwnconn1lem13 33171 wl-exeq 34327 eqvreldisj 35401 lsator0sp 35689 lkreqN 35858 2at0mat0 36213 trlator0 36859 dochkrshp4 38077 dochsat0 38145 lcfl6 38188 rp-fakeimass 39384 frege124d 39612 clsk1independent 39902 pm10.57 40262 icccncfext 41733 fourierdlem70 42025 ichnreuop 43138 uzlidlring 43700 nneop 44089 |
Copyright terms: Public domain | W3C validator |