![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orrd | Structured version Visualization version GIF version |
Description: Deduce disjunction from implication. (Contributed by NM, 27-Nov-1995.) |
Ref | Expression |
---|---|
orrd.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Ref | Expression |
---|---|
orrd | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orrd.1 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
2 | pm2.54 851 | . 2 ⊢ ((¬ 𝜓 → 𝜒) → (𝜓 ∨ 𝜒)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 847 |
This theorem is referenced by: orc 866 olc 867 pm2.68 899 pm4.79 1004 19.30 1880 axi12 2709 r19.30 3126 r19.30OLD 3127 sspss 4125 eqoreldif 4708 pwpw0 4838 sssn 4851 unissint 4996 disjiund 5157 disjxiun 5163 otsndisj 5538 otiunsndisj 5539 pwssun 5590 isso2i 5644 ordtr3 6440 ordtri2or 6493 unizlim 6518 fvclss 7278 orduniorsuc 7866 ordzsl 7882 nn0suc 7934 xpexr 7958 soseq 8200 odi 8635 swoso 8797 erdisj 8817 ordtypelem7 9593 wemapsolem 9619 domwdom 9643 iscard3 10162 ackbij1lem18 10305 fin56 10462 entric 10626 gchdomtri 10698 inttsk 10843 r1tskina 10851 psslinpr 11100 ssxr 11359 letric 11390 mul0or 11930 mulge0b 12165 zeo 12729 uzm1 12941 xrletri 13215 supxrgtmnf 13391 sq01 14274 ruclem3 16281 prm2orodd 16738 phiprmpw 16823 pleval2i 18406 irredn0 20449 drngmul0orOLD 20783 lvecvs0or 21133 lssvs0or 21135 lspsnat 21170 lsppratlem1 21172 domnchr 21570 fctop 23032 cctop 23034 ppttop 23035 clslp 23177 restntr 23211 cnconn 23451 txindis 23663 txconn 23718 isufil2 23937 ufprim 23938 alexsubALTlem3 24078 pmltpc 25504 iundisj2 25603 limcco 25948 fta1b 26231 aalioulem2 26393 abelthlem2 26494 logreclem 26823 dchrfi 27317 2sqb 27494 nosepdmlem 27746 noetasuplem4 27799 sletric 27827 muls0ord 28229 tgbtwnconn1 28601 legov3 28624 coltr 28673 colline 28675 tglowdim2ln 28677 ragflat3 28732 ragperp 28743 lmieu 28810 lmicom 28814 lmimid 28820 numedglnl 29179 nvmul0or 30682 hvmul0or 31057 atomli 32414 atordi 32416 iundisj2f 32612 iundisj2fi 32802 chnind 32983 mxidlprm 33463 ssmxidl 33467 qsdrng 33490 zarclssn 33819 signsply0 34528 pthisspthorcycl 35096 cvmsdisj 35238 nepss 35680 dfon2lem6 35752 btwnconn1lem13 36063 wl-exeq 37488 eqvreldisj 38570 lsator0sp 38957 lkreqN 39126 2at0mat0 39482 trlator0 40128 dochkrshp4 41346 dochsat0 41414 lcfl6 41457 expeqidd 42312 rp-fakeimass 43474 frege124d 43723 clsk1independent 44008 mnringmulrcld 44197 pm10.57 44340 icccncfext 45808 fourierdlem70 46097 ichnreuop 47346 uzlidlring 47958 nneop 48260 mo0sn 48547 |
Copyright terms: Public domain | W3C validator |