| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orrd | Structured version Visualization version GIF version | ||
| Description: Deduce disjunction from implication. (Contributed by NM, 27-Nov-1995.) |
| Ref | Expression |
|---|---|
| orrd.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| orrd | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orrd.1 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
| 2 | pm2.54 852 | . 2 ⊢ ((¬ 𝜓 → 𝜒) → (𝜓 ∨ 𝜒)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: orc 867 olc 868 pm2.68 900 pm4.79 1005 19.30 1882 axi12 2701 r19.30 3099 sspss 4052 eqoreldif 4638 pwpw0 4765 sssn 4778 unissint 4922 disjiund 5082 disjxiun 5088 otsndisj 5459 otiunsndisj 5460 pwssun 5508 isso2i 5561 ordtr3 6352 ordtri2or 6406 unizlim 6430 fvclss 7175 orduniorsuc 7760 ordzsl 7775 nn0suc 7824 xpexr 7848 soseq 8089 odi 8494 swoso 8656 erdisj 8679 ordtypelem7 9410 wemapsolem 9436 domwdom 9460 iscard3 9984 ackbij1lem18 10127 fin56 10284 entric 10448 gchdomtri 10520 inttsk 10665 r1tskina 10673 psslinpr 10922 1re 11112 ssxr 11182 letric 11213 mul0or 11757 mulge0b 11992 zeo 12559 uzm1 12770 xrletri 13052 supxrgtmnf 13228 sq01 14132 ruclem3 16142 prm2orodd 16602 phiprmpw 16687 pleval2i 18240 chnind 18527 irredn0 20342 drngmul0orOLD 20677 lvecvs0or 21046 lssvs0or 21048 lspsnat 21083 lsppratlem1 21085 domnchr 21470 fctop 22920 cctop 22922 ppttop 22923 clslp 23064 restntr 23098 cnconn 23338 txindis 23550 txconn 23605 isufil2 23824 ufprim 23825 alexsubALTlem3 23965 pmltpc 25379 iundisj2 25478 limcco 25822 fta1b 26105 aalioulem2 26269 abelthlem2 26370 logreclem 26700 dchrfi 27194 2sqb 27371 nosepdmlem 27623 noetasuplem4 27676 sletric 27704 muls0ord 28125 tgbtwnconn1 28554 legov3 28577 coltr 28626 colline 28628 tglowdim2ln 28630 ragflat3 28685 ragperp 28696 lmieu 28763 lmicom 28767 lmimid 28773 numedglnl 29123 pthisspthorcycl 29781 nvmul0or 30628 hvmul0or 31003 atomli 32360 atordi 32362 iundisj2f 32568 iundisj2fi 32777 gsumfs2d 33033 mxidlprm 33433 ssmxidl 33437 qsdrng 33460 zarclssn 33884 signsply0 34562 cvmsdisj 35312 nepss 35760 dfon2lem6 35828 btwnconn1lem13 36139 wl-exeq 37574 eqvreldisj 38657 lsator0sp 39046 lkreqN 39215 2at0mat0 39570 trlator0 40216 dochkrshp4 41434 dochsat0 41502 lcfl6 41545 expeqidd 42364 sn-remul0ord 42447 rp-fakeimass 43551 frege124d 43800 clsk1independent 44085 mnringmulrcld 44267 pm10.57 44410 icccncfext 45931 fourierdlem70 46220 ichnreuop 47509 uzlidlring 48272 nneop 48564 mo0sn 48853 euendfunc2 49565 |
| Copyright terms: Public domain | W3C validator |