| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orrd | Structured version Visualization version GIF version | ||
| Description: Deduce disjunction from implication. (Contributed by NM, 27-Nov-1995.) |
| Ref | Expression |
|---|---|
| orrd.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| orrd | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orrd.1 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
| 2 | pm2.54 852 | . 2 ⊢ ((¬ 𝜓 → 𝜒) → (𝜓 ∨ 𝜒)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: orc 867 olc 868 pm2.68 900 pm4.79 1005 19.30 1881 axi12 2700 r19.30 3101 sspss 4068 eqoreldif 4652 pwpw0 4780 sssn 4793 unissint 4939 disjiund 5101 disjxiun 5107 otsndisj 5482 otiunsndisj 5483 pwssun 5533 isso2i 5586 ordtr3 6381 ordtri2or 6435 unizlim 6460 fvclss 7218 orduniorsuc 7808 ordzsl 7824 nn0suc 7873 xpexr 7897 soseq 8141 odi 8546 swoso 8708 erdisj 8731 ordtypelem7 9484 wemapsolem 9510 domwdom 9534 iscard3 10053 ackbij1lem18 10196 fin56 10353 entric 10517 gchdomtri 10589 inttsk 10734 r1tskina 10742 psslinpr 10991 1re 11181 ssxr 11250 letric 11281 mul0or 11825 mulge0b 12060 zeo 12627 uzm1 12838 xrletri 13120 supxrgtmnf 13296 sq01 14197 ruclem3 16208 prm2orodd 16668 phiprmpw 16753 pleval2i 18302 irredn0 20339 drngmul0orOLD 20677 lvecvs0or 21025 lssvs0or 21027 lspsnat 21062 lsppratlem1 21064 domnchr 21449 fctop 22898 cctop 22900 ppttop 22901 clslp 23042 restntr 23076 cnconn 23316 txindis 23528 txconn 23583 isufil2 23802 ufprim 23803 alexsubALTlem3 23943 pmltpc 25358 iundisj2 25457 limcco 25801 fta1b 26084 aalioulem2 26248 abelthlem2 26349 logreclem 26679 dchrfi 27173 2sqb 27350 nosepdmlem 27602 noetasuplem4 27655 sletric 27683 muls0ord 28095 tgbtwnconn1 28509 legov3 28532 coltr 28581 colline 28583 tglowdim2ln 28585 ragflat3 28640 ragperp 28651 lmieu 28718 lmicom 28722 lmimid 28728 numedglnl 29078 pthisspthorcycl 29739 nvmul0or 30586 hvmul0or 30961 atomli 32318 atordi 32320 iundisj2f 32526 iundisj2fi 32727 chnind 32944 gsumfs2d 33002 mxidlprm 33448 ssmxidl 33452 qsdrng 33475 zarclssn 33870 signsply0 34549 cvmsdisj 35264 nepss 35712 dfon2lem6 35783 btwnconn1lem13 36094 wl-exeq 37529 eqvreldisj 38612 lsator0sp 39001 lkreqN 39170 2at0mat0 39526 trlator0 40172 dochkrshp4 41390 dochsat0 41458 lcfl6 41501 expeqidd 42320 sn-remul0ord 42403 rp-fakeimass 43508 frege124d 43757 clsk1independent 44042 mnringmulrcld 44224 pm10.57 44367 icccncfext 45892 fourierdlem70 46181 ichnreuop 47477 uzlidlring 48227 nneop 48519 mo0sn 48808 euendfunc2 49520 |
| Copyright terms: Public domain | W3C validator |