| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orrd | Structured version Visualization version GIF version | ||
| Description: Deduce disjunction from implication. (Contributed by NM, 27-Nov-1995.) |
| Ref | Expression |
|---|---|
| orrd.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| orrd | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orrd.1 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
| 2 | pm2.54 852 | . 2 ⊢ ((¬ 𝜓 → 𝜒) → (𝜓 ∨ 𝜒)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: orc 867 olc 868 pm2.68 900 pm4.79 1005 19.30 1881 axi12 2699 r19.30 3096 sspss 4055 eqoreldif 4639 pwpw0 4767 sssn 4780 unissint 4925 disjiund 5086 disjxiun 5092 otsndisj 5466 otiunsndisj 5467 pwssun 5515 isso2i 5568 ordtr3 6357 ordtri2or 6411 unizlim 6435 fvclss 7181 orduniorsuc 7769 ordzsl 7785 nn0suc 7834 xpexr 7858 soseq 8099 odi 8504 swoso 8666 erdisj 8689 ordtypelem7 9435 wemapsolem 9461 domwdom 9485 iscard3 10006 ackbij1lem18 10149 fin56 10306 entric 10470 gchdomtri 10542 inttsk 10687 r1tskina 10695 psslinpr 10944 1re 11134 ssxr 11203 letric 11234 mul0or 11778 mulge0b 12013 zeo 12580 uzm1 12791 xrletri 13073 supxrgtmnf 13249 sq01 14150 ruclem3 16160 prm2orodd 16620 phiprmpw 16705 pleval2i 18258 irredn0 20326 drngmul0orOLD 20664 lvecvs0or 21033 lssvs0or 21035 lspsnat 21070 lsppratlem1 21072 domnchr 21457 fctop 22907 cctop 22909 ppttop 22910 clslp 23051 restntr 23085 cnconn 23325 txindis 23537 txconn 23592 isufil2 23811 ufprim 23812 alexsubALTlem3 23952 pmltpc 25367 iundisj2 25466 limcco 25810 fta1b 26093 aalioulem2 26257 abelthlem2 26358 logreclem 26688 dchrfi 27182 2sqb 27359 nosepdmlem 27611 noetasuplem4 27664 sletric 27692 muls0ord 28111 tgbtwnconn1 28538 legov3 28561 coltr 28610 colline 28612 tglowdim2ln 28614 ragflat3 28669 ragperp 28680 lmieu 28747 lmicom 28751 lmimid 28757 numedglnl 29107 pthisspthorcycl 29765 nvmul0or 30612 hvmul0or 30987 atomli 32344 atordi 32346 iundisj2f 32552 iundisj2fi 32753 chnind 32966 gsumfs2d 33021 mxidlprm 33420 ssmxidl 33424 qsdrng 33447 zarclssn 33842 signsply0 34521 cvmsdisj 35245 nepss 35693 dfon2lem6 35764 btwnconn1lem13 36075 wl-exeq 37510 eqvreldisj 38593 lsator0sp 38982 lkreqN 39151 2at0mat0 39507 trlator0 40153 dochkrshp4 41371 dochsat0 41439 lcfl6 41482 expeqidd 42301 sn-remul0ord 42384 rp-fakeimass 43488 frege124d 43737 clsk1independent 44022 mnringmulrcld 44204 pm10.57 44347 icccncfext 45872 fourierdlem70 46161 ichnreuop 47460 uzlidlring 48223 nneop 48515 mo0sn 48804 euendfunc2 49516 |
| Copyright terms: Public domain | W3C validator |