| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orrd | Structured version Visualization version GIF version | ||
| Description: Deduce disjunction from implication. (Contributed by NM, 27-Nov-1995.) |
| Ref | Expression |
|---|---|
| orrd.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| orrd | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orrd.1 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
| 2 | pm2.54 852 | . 2 ⊢ ((¬ 𝜓 → 𝜒) → (𝜓 ∨ 𝜒)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: orc 867 olc 868 pm2.68 900 pm4.79 1005 19.30 1881 axi12 2699 r19.30 3100 sspss 4065 eqoreldif 4649 pwpw0 4777 sssn 4790 unissint 4936 disjiund 5098 disjxiun 5104 otsndisj 5479 otiunsndisj 5480 pwssun 5530 isso2i 5583 ordtr3 6378 ordtri2or 6432 unizlim 6457 fvclss 7215 orduniorsuc 7805 ordzsl 7821 nn0suc 7870 xpexr 7894 soseq 8138 odi 8543 swoso 8705 erdisj 8728 ordtypelem7 9477 wemapsolem 9503 domwdom 9527 iscard3 10046 ackbij1lem18 10189 fin56 10346 entric 10510 gchdomtri 10582 inttsk 10727 r1tskina 10735 psslinpr 10984 1re 11174 ssxr 11243 letric 11274 mul0or 11818 mulge0b 12053 zeo 12620 uzm1 12831 xrletri 13113 supxrgtmnf 13289 sq01 14190 ruclem3 16201 prm2orodd 16661 phiprmpw 16746 pleval2i 18295 irredn0 20332 drngmul0orOLD 20670 lvecvs0or 21018 lssvs0or 21020 lspsnat 21055 lsppratlem1 21057 domnchr 21442 fctop 22891 cctop 22893 ppttop 22894 clslp 23035 restntr 23069 cnconn 23309 txindis 23521 txconn 23576 isufil2 23795 ufprim 23796 alexsubALTlem3 23936 pmltpc 25351 iundisj2 25450 limcco 25794 fta1b 26077 aalioulem2 26241 abelthlem2 26342 logreclem 26672 dchrfi 27166 2sqb 27343 nosepdmlem 27595 noetasuplem4 27648 sletric 27676 muls0ord 28088 tgbtwnconn1 28502 legov3 28525 coltr 28574 colline 28576 tglowdim2ln 28578 ragflat3 28633 ragperp 28644 lmieu 28711 lmicom 28715 lmimid 28721 numedglnl 29071 pthisspthorcycl 29732 nvmul0or 30579 hvmul0or 30954 atomli 32311 atordi 32313 iundisj2f 32519 iundisj2fi 32720 chnind 32937 gsumfs2d 32995 mxidlprm 33441 ssmxidl 33445 qsdrng 33468 zarclssn 33863 signsply0 34542 cvmsdisj 35257 nepss 35705 dfon2lem6 35776 btwnconn1lem13 36087 wl-exeq 37522 eqvreldisj 38605 lsator0sp 38994 lkreqN 39163 2at0mat0 39519 trlator0 40165 dochkrshp4 41383 dochsat0 41451 lcfl6 41494 expeqidd 42313 sn-remul0ord 42396 rp-fakeimass 43501 frege124d 43750 clsk1independent 44035 mnringmulrcld 44217 pm10.57 44360 icccncfext 45885 fourierdlem70 46174 ichnreuop 47473 uzlidlring 48223 nneop 48515 mo0sn 48804 euendfunc2 49516 |
| Copyright terms: Public domain | W3C validator |