![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orrd | Structured version Visualization version GIF version |
Description: Deduce disjunction from implication. (Contributed by NM, 27-Nov-1995.) |
Ref | Expression |
---|---|
orrd.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Ref | Expression |
---|---|
orrd | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orrd.1 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
2 | pm2.54 852 | . 2 ⊢ ((¬ 𝜓 → 𝜒) → (𝜓 ∨ 𝜒)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 848 |
This theorem is referenced by: orc 867 olc 868 pm2.68 900 pm4.79 1005 19.30 1878 axi12 2703 r19.30 3117 r19.30OLD 3118 sspss 4111 eqoreldif 4689 pwpw0 4817 sssn 4830 unissint 4976 disjiund 5138 disjxiun 5144 otsndisj 5528 otiunsndisj 5529 pwssun 5579 isso2i 5632 ordtr3 6430 ordtri2or 6483 unizlim 6508 fvclss 7260 orduniorsuc 7849 ordzsl 7865 nn0suc 7916 xpexr 7940 soseq 8182 odi 8615 swoso 8777 erdisj 8797 ordtypelem7 9561 wemapsolem 9587 domwdom 9611 iscard3 10130 ackbij1lem18 10273 fin56 10430 entric 10594 gchdomtri 10666 inttsk 10811 r1tskina 10819 psslinpr 11068 ssxr 11327 letric 11358 mul0or 11900 mulge0b 12135 zeo 12701 uzm1 12913 xrletri 13191 supxrgtmnf 13367 sq01 14260 ruclem3 16265 prm2orodd 16724 phiprmpw 16809 pleval2i 18393 irredn0 20439 drngmul0orOLD 20777 lvecvs0or 21127 lssvs0or 21129 lspsnat 21164 lsppratlem1 21166 domnchr 21564 fctop 23026 cctop 23028 ppttop 23029 clslp 23171 restntr 23205 cnconn 23445 txindis 23657 txconn 23712 isufil2 23931 ufprim 23932 alexsubALTlem3 24072 pmltpc 25498 iundisj2 25597 limcco 25942 fta1b 26225 aalioulem2 26389 abelthlem2 26490 logreclem 26819 dchrfi 27313 2sqb 27490 nosepdmlem 27742 noetasuplem4 27795 sletric 27823 muls0ord 28225 tgbtwnconn1 28597 legov3 28620 coltr 28669 colline 28671 tglowdim2ln 28673 ragflat3 28728 ragperp 28739 lmieu 28806 lmicom 28810 lmimid 28816 numedglnl 29175 nvmul0or 30678 hvmul0or 31053 atomli 32410 atordi 32412 iundisj2f 32609 iundisj2fi 32804 chnind 32984 gsumfs2d 33040 mxidlprm 33477 ssmxidl 33481 qsdrng 33504 zarclssn 33833 signsply0 34544 pthisspthorcycl 35112 cvmsdisj 35254 nepss 35697 dfon2lem6 35769 btwnconn1lem13 36080 wl-exeq 37514 eqvreldisj 38595 lsator0sp 38982 lkreqN 39151 2at0mat0 39507 trlator0 40153 dochkrshp4 41371 dochsat0 41439 lcfl6 41482 expeqidd 42338 rp-fakeimass 43501 frege124d 43750 clsk1independent 44035 mnringmulrcld 44223 pm10.57 44366 icccncfext 45842 fourierdlem70 46131 ichnreuop 47396 uzlidlring 48078 nneop 48375 mo0sn 48663 |
Copyright terms: Public domain | W3C validator |