Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orrd | Structured version Visualization version GIF version |
Description: Deduce disjunction from implication. (Contributed by NM, 27-Nov-1995.) |
Ref | Expression |
---|---|
orrd.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Ref | Expression |
---|---|
orrd | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orrd.1 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
2 | pm2.54 849 | . 2 ⊢ ((¬ 𝜓 → 𝜒) → (𝜓 ∨ 𝜒)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 845 |
This theorem is referenced by: orc 864 olc 865 pm2.68 898 pm4.79 1001 19.30 1881 axi12 2704 r19.30 3117 r19.30OLD 3118 sspss 4033 eqoreldif 4619 pwpw0 4745 sssn 4758 pwsnOLD 4831 unissint 4902 disjiund 5063 disjxiun 5070 otsndisj 5432 otiunsndisj 5433 pwssun 5484 isso2i 5537 ordtr3 6313 ordtri2or 6363 unizlim 6385 fvclss 7122 orduniorsuc 7684 ordzsl 7699 nn0suc 7749 xpexr 7772 odi 8417 swoso 8538 erdisj 8557 ordtypelem7 9290 wemapsolem 9316 domwdom 9340 iscard3 9856 ackbij1lem18 10000 fin56 10156 entric 10320 gchdomtri 10392 inttsk 10537 r1tskina 10545 psslinpr 10794 ssxr 11051 letric 11082 mul0or 11622 mulge0b 11852 zeo 12413 uzm1 12623 xrletri 12894 supxrgtmnf 13070 sq01 13947 ruclem3 15949 prm2orodd 16403 phiprmpw 16484 pleval2i 18061 irredn0 19952 drngmul0or 20019 lvecvs0or 20377 lssvs0or 20379 lspsnat 20414 lsppratlem1 20416 domnchr 20743 fctop 22161 cctop 22163 ppttop 22164 clslp 22306 restntr 22340 cnconn 22580 txindis 22792 txconn 22847 isufil2 23066 ufprim 23067 alexsubALTlem3 23207 pmltpc 24621 iundisj2 24720 limcco 25064 fta1b 25341 aalioulem2 25500 abelthlem2 25598 logreclem 25919 dchrfi 26410 2sqb 26587 tgbtwnconn1 26943 legov3 26966 coltr 27015 colline 27017 tglowdim2ln 27019 ragflat3 27074 ragperp 27085 lmieu 27152 lmicom 27156 lmimid 27162 numedglnl 27521 nvmul0or 29019 hvmul0or 29394 atomli 30751 atordi 30753 iundisj2f 30936 iundisj2fi 31125 mxidlprm 31647 ssmxidl 31649 zarclssn 31830 signsply0 32537 pthisspthorcycl 33097 cvmsdisj 33239 nepss 33669 dfon2lem6 33771 soseq 33810 nosepdmlem 33893 noetasuplem4 33946 btwnconn1lem13 34408 wl-exeq 35700 eqvreldisj 36732 lsator0sp 37020 lkreqN 37189 2at0mat0 37544 trlator0 38190 dochkrshp4 39408 dochsat0 39476 lcfl6 39519 rp-fakeimass 41124 frege124d 41374 clsk1independent 41661 mnringmulrcld 41851 pm10.57 41994 icccncfext 43444 fourierdlem70 43733 ichnreuop 44945 uzlidlring 45508 nneop 45893 mo0sn 46182 |
Copyright terms: Public domain | W3C validator |