| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orrd | Structured version Visualization version GIF version | ||
| Description: Deduce disjunction from implication. (Contributed by NM, 27-Nov-1995.) |
| Ref | Expression |
|---|---|
| orrd.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| orrd | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orrd.1 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
| 2 | pm2.54 852 | . 2 ⊢ ((¬ 𝜓 → 𝜒) → (𝜓 ∨ 𝜒)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: orc 867 olc 868 pm2.68 900 pm4.79 1005 19.30 1881 axi12 2705 r19.30 3107 sspss 4077 eqoreldif 4661 pwpw0 4789 sssn 4802 unissint 4948 disjiund 5110 disjxiun 5116 otsndisj 5494 otiunsndisj 5495 pwssun 5545 isso2i 5598 ordtr3 6398 ordtri2or 6451 unizlim 6476 fvclss 7232 orduniorsuc 7822 ordzsl 7838 nn0suc 7888 xpexr 7912 soseq 8156 odi 8589 swoso 8751 erdisj 8771 ordtypelem7 9536 wemapsolem 9562 domwdom 9586 iscard3 10105 ackbij1lem18 10248 fin56 10405 entric 10569 gchdomtri 10641 inttsk 10786 r1tskina 10794 psslinpr 11043 ssxr 11302 letric 11333 mul0or 11875 mulge0b 12110 zeo 12677 uzm1 12888 xrletri 13167 supxrgtmnf 13343 sq01 14241 ruclem3 16249 prm2orodd 16708 phiprmpw 16793 pleval2i 18344 irredn0 20381 drngmul0orOLD 20719 lvecvs0or 21067 lssvs0or 21069 lspsnat 21104 lsppratlem1 21106 domnchr 21491 fctop 22940 cctop 22942 ppttop 22943 clslp 23084 restntr 23118 cnconn 23358 txindis 23570 txconn 23625 isufil2 23844 ufprim 23845 alexsubALTlem3 23985 pmltpc 25401 iundisj2 25500 limcco 25844 fta1b 26127 aalioulem2 26291 abelthlem2 26392 logreclem 26722 dchrfi 27216 2sqb 27393 nosepdmlem 27645 noetasuplem4 27698 sletric 27726 muls0ord 28128 tgbtwnconn1 28500 legov3 28523 coltr 28572 colline 28574 tglowdim2ln 28576 ragflat3 28631 ragperp 28642 lmieu 28709 lmicom 28713 lmimid 28719 numedglnl 29069 pthisspthorcycl 29730 nvmul0or 30577 hvmul0or 30952 atomli 32309 atordi 32311 iundisj2f 32517 iundisj2fi 32720 chnind 32937 gsumfs2d 32995 mxidlprm 33431 ssmxidl 33435 qsdrng 33458 zarclssn 33850 signsply0 34529 cvmsdisj 35238 nepss 35681 dfon2lem6 35752 btwnconn1lem13 36063 wl-exeq 37498 eqvreldisj 38578 lsator0sp 38965 lkreqN 39134 2at0mat0 39490 trlator0 40136 dochkrshp4 41354 dochsat0 41422 lcfl6 41465 expeqidd 42321 rp-fakeimass 43483 frege124d 43732 clsk1independent 44017 mnringmulrcld 44200 pm10.57 44343 icccncfext 45864 fourierdlem70 46153 ichnreuop 47434 uzlidlring 48158 nneop 48454 mo0sn 48742 euendfunc2 49360 |
| Copyright terms: Public domain | W3C validator |