Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orrd | Structured version Visualization version GIF version |
Description: Deduce disjunction from implication. (Contributed by NM, 27-Nov-1995.) |
Ref | Expression |
---|---|
orrd.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Ref | Expression |
---|---|
orrd | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orrd.1 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
2 | pm2.54 849 | . 2 ⊢ ((¬ 𝜓 → 𝜒) → (𝜓 ∨ 𝜒)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-or 845 |
This theorem is referenced by: orc 864 olc 865 pm2.68 898 pm4.79 1001 19.30 1882 axi12 2727 r19.30 3258 sspss 4007 eqoreldif 4582 pwpw0 4706 sssn 4719 pwsnOLD 4794 unissint 4865 disjiund 5026 disjxiun 5033 otsndisj 5382 otiunsndisj 5383 pwssun 5430 isso2i 5481 ordtr3 6219 ordtri2or 6269 unizlim 6291 fvclss 6999 orduniorsuc 7550 ordzsl 7565 nn0suc 7611 xpexr 7634 odi 8221 swoso 8338 erdisj 8357 ordtypelem7 9034 wemapsolem 9060 domwdom 9084 iscard3 9566 ackbij1lem18 9710 fin56 9866 entric 10030 gchdomtri 10102 inttsk 10247 r1tskina 10255 psslinpr 10504 ssxr 10761 letric 10791 mul0or 11331 mulge0b 11561 zeo 12120 uzm1 12329 xrletri 12600 supxrgtmnf 12776 sq01 13649 ruclem3 15647 prm2orodd 16101 phiprmpw 16182 pleval2i 17654 irredn0 19538 drngmul0or 19605 lvecvs0or 19962 lssvs0or 19964 lspsnat 19999 lsppratlem1 20001 domnchr 20314 fctop 21718 cctop 21720 ppttop 21721 clslp 21862 restntr 21896 cnconn 22136 txindis 22348 txconn 22403 isufil2 22622 ufprim 22623 alexsubALTlem3 22763 pmltpc 24164 iundisj2 24263 limcco 24606 fta1b 24883 aalioulem2 25042 abelthlem2 25140 logreclem 25461 dchrfi 25952 2sqb 26129 tgbtwnconn1 26482 legov3 26505 coltr 26554 colline 26556 tglowdim2ln 26558 ragflat3 26613 ragperp 26624 lmieu 26691 lmicom 26695 lmimid 26701 numedglnl 27050 nvmul0or 28546 hvmul0or 28921 atomli 30278 atordi 30280 iundisj2f 30465 iundisj2fi 30655 mxidlprm 31174 ssmxidl 31176 zarclssn 31357 signsply0 32062 pthisspthorcycl 32619 cvmsdisj 32761 nepss 33193 dfon2lem6 33293 soseq 33371 nosepdmlem 33484 noetasuplem4 33537 btwnconn1lem13 33985 wl-exeq 35254 eqvreldisj 36324 lsator0sp 36612 lkreqN 36781 2at0mat0 37136 trlator0 37782 dochkrshp4 39000 dochsat0 39068 lcfl6 39111 rp-fakeimass 40638 frege124d 40880 clsk1independent 41167 mnringmulrcld 41354 pm10.57 41493 icccncfext 42940 fourierdlem70 43229 ichnreuop 44416 uzlidlring 44979 nneop 45364 |
Copyright terms: Public domain | W3C validator |