MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spc3egv Structured version   Visualization version   GIF version

Theorem spc3egv 3532
Description: Existential specialization with three quantifiers, using implicit substitution. (Contributed by NM, 12-May-2008.) Avoid ax-10 2139 and ax-11 2156. (Revised by Gino Giotto, 20-Aug-2023.) (Proof shortened by Wolf Lammen, 25-Aug-2023.)
Hypothesis
Ref Expression
spc3egv.1 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))
Assertion
Ref Expression
spc3egv ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝜓 → ∃𝑥𝑦𝑧𝜑))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜓,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)   𝑋(𝑥,𝑦,𝑧)

Proof of Theorem spc3egv
StepHypRef Expression
1 elex 3440 . 2 (𝐴𝑉𝐴 ∈ V)
2 elex 3440 . 2 (𝐵𝑊𝐵 ∈ V)
3 elex 3440 . 2 (𝐶𝑋𝐶 ∈ V)
4 simp1 1134 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → 𝐴 ∈ V)
5 spc3egv.1 . . . . . . . . . . 11 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))
653coml 1125 . . . . . . . . . 10 ((𝑦 = 𝐵𝑧 = 𝐶𝑥 = 𝐴) → (𝜑𝜓))
763expa 1116 . . . . . . . . 9 (((𝑦 = 𝐵𝑧 = 𝐶) ∧ 𝑥 = 𝐴) → (𝜑𝜓))
87pm5.74da 800 . . . . . . . 8 ((𝑦 = 𝐵𝑧 = 𝐶) → ((𝑥 = 𝐴𝜑) ↔ (𝑥 = 𝐴𝜓)))
98spc2egv 3528 . . . . . . 7 ((𝐵 ∈ V ∧ 𝐶 ∈ V) → ((𝑥 = 𝐴𝜓) → ∃𝑦𝑧(𝑥 = 𝐴𝜑)))
10 19.37v 1996 . . . . . . . . 9 (∃𝑧(𝑥 = 𝐴𝜑) ↔ (𝑥 = 𝐴 → ∃𝑧𝜑))
1110exbii 1851 . . . . . . . 8 (∃𝑦𝑧(𝑥 = 𝐴𝜑) ↔ ∃𝑦(𝑥 = 𝐴 → ∃𝑧𝜑))
12 19.37v 1996 . . . . . . . 8 (∃𝑦(𝑥 = 𝐴 → ∃𝑧𝜑) ↔ (𝑥 = 𝐴 → ∃𝑦𝑧𝜑))
1311, 12bitri 274 . . . . . . 7 (∃𝑦𝑧(𝑥 = 𝐴𝜑) ↔ (𝑥 = 𝐴 → ∃𝑦𝑧𝜑))
149, 13syl6ib 250 . . . . . 6 ((𝐵 ∈ V ∧ 𝐶 ∈ V) → ((𝑥 = 𝐴𝜓) → (𝑥 = 𝐴 → ∃𝑦𝑧𝜑)))
1514pm2.86d 108 . . . . 5 ((𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝑥 = 𝐴 → (𝜓 → ∃𝑦𝑧𝜑)))
16153adant1 1128 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝑥 = 𝐴 → (𝜓 → ∃𝑦𝑧𝜑)))
1716imp 406 . . 3 (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ 𝑥 = 𝐴) → (𝜓 → ∃𝑦𝑧𝜑))
184, 17spcimedv 3524 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝜓 → ∃𝑥𝑦𝑧𝜑))
191, 2, 3, 18syl3an 1158 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝜓 → ∃𝑥𝑦𝑧𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  Vcvv 3422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424
This theorem is referenced by:  spc3gv  3533  dihjatcclem4  39362  fundcmpsurbijinjpreimafv  44747  fundcmpsurinjALT  44752
  Copyright terms: Public domain W3C validator