|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > pm5.74 | Structured version Visualization version GIF version | ||
| Description: Distribution of implication over biconditional. Theorem *5.74 of [WhiteheadRussell] p. 126. (Contributed by NM, 1-Aug-1994.) (Proof shortened by Wolf Lammen, 11-Apr-2013.) | 
| Ref | Expression | 
|---|---|
| pm5.74 | ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | biimp 215 | . . . 4 ⊢ ((𝜓 ↔ 𝜒) → (𝜓 → 𝜒)) | |
| 2 | 1 | imim3i 64 | . . 3 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | 
| 3 | biimpr 220 | . . . 4 ⊢ ((𝜓 ↔ 𝜒) → (𝜒 → 𝜓)) | |
| 4 | 3 | imim3i 64 | . . 3 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) → ((𝜑 → 𝜒) → (𝜑 → 𝜓))) | 
| 5 | 2, 4 | impbid 212 | . 2 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) | 
| 6 | biimp 215 | . . . 4 ⊢ (((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | |
| 7 | 6 | pm2.86d 108 | . . 3 ⊢ (((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) → (𝜑 → (𝜓 → 𝜒))) | 
| 8 | biimpr 220 | . . . 4 ⊢ (((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) → ((𝜑 → 𝜒) → (𝜑 → 𝜓))) | |
| 9 | 8 | pm2.86d 108 | . . 3 ⊢ (((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) → (𝜑 → (𝜒 → 𝜓))) | 
| 10 | 7, 9 | impbidd 210 | . 2 ⊢ (((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) → (𝜑 → (𝜓 ↔ 𝜒))) | 
| 11 | 5, 10 | impbii 209 | 1 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 | 
| This theorem is referenced by: pm5.74i 271 pm5.74ri 272 pm5.74d 273 pm5.74rd 274 bibi2d 342 pm5.32 573 orbidi 955 bj-sblem 36845 | 
| Copyright terms: Public domain | W3C validator |