MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.12 Structured version   Visualization version   GIF version

Theorem pm5.12 942
Description: Theorem *5.12 of [WhiteheadRussell] p. 123. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm5.12 ((𝜑𝜓) ∨ (𝜑 → ¬ 𝜓))

Proof of Theorem pm5.12
StepHypRef Expression
1 pm2.51 172 . 2 (¬ (𝜑𝜓) → (𝜑 → ¬ 𝜓))
21orri 858 1 ((𝜑𝜓) ∨ (𝜑 → ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 844
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator