![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orri | Structured version Visualization version GIF version |
Description: Infer disjunction from implication. (Contributed by NM, 11-Jun-1994.) |
Ref | Expression |
---|---|
orri.1 | ⊢ (¬ 𝜑 → 𝜓) |
Ref | Expression |
---|---|
orri | ⊢ (𝜑 ∨ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orri.1 | . 2 ⊢ (¬ 𝜑 → 𝜓) | |
2 | df-or 847 | . 2 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
3 | 1, 2 | mpbir 231 | 1 ⊢ (𝜑 ∨ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 847 |
This theorem is referenced by: orci 864 olci 865 pm2.25 888 curryax 892 exmid 893 pm2.13 896 pm5.11g 944 pm5.12 946 pm5.14 947 pm5.55 949 pm3.12 994 pm5.15 1013 pm5.54 1018 4exmid 1052 rb-ax2 1751 rb-ax3 1752 rb-ax4 1753 exmo 2545 axi12 2709 exmidne 2956 ifeqor 4599 fvbr0 6949 letrii 11415 clwwlknondisj 30143 poimirlem26 37606 tsbi3 38095 tsan2 38102 tsan3 38103 clsk1indlem2 44004 |
Copyright terms: Public domain | W3C validator |