MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orri Structured version   Visualization version   GIF version

Theorem orri 862
Description: Infer disjunction from implication. (Contributed by NM, 11-Jun-1994.)
Hypothesis
Ref Expression
orri.1 𝜑𝜓)
Assertion
Ref Expression
orri (𝜑𝜓)

Proof of Theorem orri
StepHypRef Expression
1 orri.1 . 2 𝜑𝜓)
2 df-or 848 . 2 ((𝜑𝜓) ↔ (¬ 𝜑𝜓))
31, 2mpbir 231 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848
This theorem is referenced by:  orci  865  olci  866  pm2.25  889  curryax  893  exmid  894  pm2.13  897  pm5.11g  945  pm5.12  947  pm5.14  948  pm5.55  950  pm3.12  995  pm5.15  1014  pm5.54  1019  4exmid  1051  rb-ax2  1753  rb-ax3  1754  rb-ax4  1755  exmo  2541  axi12  2705  exmidne  2942  ifeqor  4552  fvbr0  6905  letrii  11360  clwwlknondisj  30092  poimirlem26  37670  tsbi3  38159  tsan2  38166  tsan3  38167  clsk1indlem2  44066
  Copyright terms: Public domain W3C validator