Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orri | Structured version Visualization version GIF version |
Description: Infer disjunction from implication. (Contributed by NM, 11-Jun-1994.) |
Ref | Expression |
---|---|
orri.1 | ⊢ (¬ 𝜑 → 𝜓) |
Ref | Expression |
---|---|
orri | ⊢ (𝜑 ∨ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orri.1 | . 2 ⊢ (¬ 𝜑 → 𝜓) | |
2 | df-or 846 | . 2 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
3 | 1, 2 | mpbir 234 | 1 ⊢ (𝜑 ∨ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-or 846 |
This theorem is referenced by: orci 863 olci 864 pm2.25 888 curryax 892 exmid 893 pm2.13 896 pm5.11g 942 pm5.12 944 pm5.14 945 pm5.55 947 pm3.12 992 pm5.15 1011 pm5.54 1016 4exmid 1048 rb-ax2 1756 rb-ax3 1757 rb-ax4 1758 exmo 2560 axi12 2728 exmidne 2959 ifeqor 4464 fvbr0 6678 letrii 10788 clwwlknondisj 27980 poimirlem26 35348 tsbi3 35838 tsan2 35845 tsan3 35846 clsk1indlem2 41103 |
Copyright terms: Public domain | W3C validator |