MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orri Structured version   Visualization version   GIF version

Theorem orri 861
Description: Infer disjunction from implication. (Contributed by NM, 11-Jun-1994.)
Hypothesis
Ref Expression
orri.1 𝜑𝜓)
Assertion
Ref Expression
orri (𝜑𝜓)

Proof of Theorem orri
StepHypRef Expression
1 orri.1 . 2 𝜑𝜓)
2 df-or 847 . 2 ((𝜑𝜓) ↔ (¬ 𝜑𝜓))
31, 2mpbir 231 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 847
This theorem is referenced by:  orci  864  olci  865  pm2.25  888  curryax  892  exmid  893  pm2.13  896  pm5.11g  944  pm5.12  946  pm5.14  947  pm5.55  949  pm3.12  994  pm5.15  1013  pm5.54  1018  4exmid  1052  rb-ax2  1751  rb-ax3  1752  rb-ax4  1753  exmo  2545  axi12  2709  exmidne  2956  ifeqor  4599  fvbr0  6949  letrii  11415  clwwlknondisj  30143  poimirlem26  37606  tsbi3  38095  tsan2  38102  tsan3  38103  clsk1indlem2  44004
  Copyright terms: Public domain W3C validator