MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orri Structured version   Visualization version   GIF version

Theorem orri 859
Description: Infer disjunction from implication. (Contributed by NM, 11-Jun-1994.)
Hypothesis
Ref Expression
orri.1 𝜑𝜓)
Assertion
Ref Expression
orri (𝜑𝜓)

Proof of Theorem orri
StepHypRef Expression
1 orri.1 . 2 𝜑𝜓)
2 df-or 845 . 2 ((𝜑𝜓) ↔ (¬ 𝜑𝜓))
31, 2mpbir 230 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 845
This theorem is referenced by:  orci  862  olci  863  pm2.25  887  curryax  891  exmid  892  pm2.13  895  pm5.11g  941  pm5.12  943  pm5.14  944  pm5.55  946  pm3.12  991  pm5.15  1010  pm5.54  1015  4exmid  1049  rb-ax2  1756  rb-ax3  1757  rb-ax4  1758  exmo  2542  axi12  2707  exmidne  2953  ifeqor  4510  fvbr0  6801  letrii  11100  clwwlknondisj  28475  poimirlem26  35803  tsbi3  36293  tsan2  36300  tsan3  36301  clsk1indlem2  41652
  Copyright terms: Public domain W3C validator