![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orri | Structured version Visualization version GIF version |
Description: Infer disjunction from implication. (Contributed by NM, 11-Jun-1994.) |
Ref | Expression |
---|---|
orri.1 | ⊢ (¬ 𝜑 → 𝜓) |
Ref | Expression |
---|---|
orri | ⊢ (𝜑 ∨ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orri.1 | . 2 ⊢ (¬ 𝜑 → 𝜓) | |
2 | df-or 875 | . 2 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
3 | 1, 2 | mpbir 223 | 1 ⊢ (𝜑 ∨ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 874 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-or 875 |
This theorem is referenced by: orci 892 olci 893 pm2.25 914 curryax 918 exmid 919 pm2.13 922 pm5.11 968 pm5.12 969 pm5.14 970 pm5.55 972 pm3.12 1017 pm5.15 1037 pm5.54 1042 4exmid 1075 rb-ax2 1849 rb-ax3 1850 rb-ax4 1851 exmo 2602 exmoOLD 2637 axi12 2775 axbnd 2776 exmidne 2981 ifeqor 4326 fvbr0 6438 letrii 10452 clwwlknondisj 27451 clwwlknondisjOLD 27456 poimirlem26 33924 tsbi3 34428 tsan2 34435 tsan3 34436 clsk1indlem2 39122 |
Copyright terms: Public domain | W3C validator |