MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orri Structured version   Visualization version   GIF version

Theorem orri 860
Description: Infer disjunction from implication. (Contributed by NM, 11-Jun-1994.)
Hypothesis
Ref Expression
orri.1 𝜑𝜓)
Assertion
Ref Expression
orri (𝜑𝜓)

Proof of Theorem orri
StepHypRef Expression
1 orri.1 . 2 𝜑𝜓)
2 df-or 846 . 2 ((𝜑𝜓) ↔ (¬ 𝜑𝜓))
31, 2mpbir 230 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 846
This theorem is referenced by:  orci  863  olci  864  pm2.25  888  curryax  892  exmid  893  pm2.13  896  pm5.11g  942  pm5.12  944  pm5.14  945  pm5.55  947  pm3.12  992  pm5.15  1011  pm5.54  1016  4exmid  1050  rb-ax2  1755  rb-ax3  1756  rb-ax4  1757  exmo  2535  axi12  2700  exmidne  2949  ifeqor  4573  fvbr0  6907  letrii  11321  clwwlknondisj  29229  poimirlem26  36318  tsbi3  36808  tsan2  36815  tsan3  36816  clsk1indlem2  42564
  Copyright terms: Public domain W3C validator