MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.13 Structured version   Visualization version   GIF version

Theorem pm5.13 948
Description: Theorem *5.13 of [WhiteheadRussell] p. 123. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 14-Nov-2012.)
Assertion
Ref Expression
pm5.13 ((𝜑𝜓) ∨ (𝜓𝜑))

Proof of Theorem pm5.13
StepHypRef Expression
1 pm5.14 947 1 ((𝜑𝜓) ∨ (𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-or 848
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator