| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.55 | Structured version Visualization version GIF version | ||
| Description: Theorem *5.55 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 20-Jan-2013.) |
| Ref | Expression |
|---|---|
| pm5.55 | ⊢ (((𝜑 ∨ 𝜓) ↔ 𝜑) ∨ ((𝜑 ∨ 𝜓) ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biort 935 | . . . 4 ⊢ (𝜑 → (𝜑 ↔ (𝜑 ∨ 𝜓))) | |
| 2 | 1 | bicomd 223 | . . 3 ⊢ (𝜑 → ((𝜑 ∨ 𝜓) ↔ 𝜑)) |
| 3 | biorf 936 | . . . 4 ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) | |
| 4 | 3 | bicomd 223 | . . 3 ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) ↔ 𝜓)) |
| 5 | 2, 4 | nsyl5 159 | . 2 ⊢ (¬ ((𝜑 ∨ 𝜓) ↔ 𝜑) → ((𝜑 ∨ 𝜓) ↔ 𝜓)) |
| 6 | 5 | orri 862 | 1 ⊢ (((𝜑 ∨ 𝜓) ↔ 𝜑) ∨ ((𝜑 ∨ 𝜓) ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |