Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rp-frege25 Structured version   Visualization version   GIF version

Theorem rp-frege25 41413
Description: Closed form for a1dd 50. Alternate route to Proposition 25 of [Frege1879] p. 42. (Contributed by RP, 24-Dec-2019.)
Assertion
Ref Expression
rp-frege25 ((𝜑 → (𝜓𝜒)) → (𝜑 → (𝜓 → (𝜃𝜒))))

Proof of Theorem rp-frege25
StepHypRef Expression
1 rp-frege24 41405 . 2 ((𝜓𝜒) → (𝜓 → (𝜃𝜒)))
2 frege5 41408 . 2 (((𝜓𝜒) → (𝜓 → (𝜃𝜒))) → ((𝜑 → (𝜓𝜒)) → (𝜑 → (𝜓 → (𝜃𝜒)))))
31, 2ax-mp 5 1 ((𝜑 → (𝜓𝜒)) → (𝜑 → (𝜓 → (𝜃𝜒))))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege1 41398  ax-frege2 41399
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator