Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rp-simp2-frege Structured version   Visualization version   GIF version

Theorem rp-simp2-frege 41289
Description: Simplification of triple conjunction. Compare with simp2 1135. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
rp-simp2-frege (𝜑 → (𝜓 → (𝜒𝜓)))

Proof of Theorem rp-simp2-frege
StepHypRef Expression
1 ax-frege1 41287 . 2 (𝜓 → (𝜒𝜓))
2 ax-frege1 41287 . 2 ((𝜓 → (𝜒𝜓)) → (𝜑 → (𝜓 → (𝜒𝜓))))
31, 2ax-mp 5 1 (𝜑 → (𝜓 → (𝜒𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege1 41287
This theorem is referenced by:  rp-simp2  41290  rp-frege24  41294  rp-4frege  41299
  Copyright terms: Public domain W3C validator