Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rp-simp2 Structured version   Visualization version   GIF version

Theorem rp-simp2 41290
Description: Simplification of triple conjunction. Identical to simp2 1135. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
rp-simp2 ((𝜑𝜓𝜒) → 𝜓)

Proof of Theorem rp-simp2
StepHypRef Expression
1 rp-simp2-frege 41289 . 2 (𝜑 → (𝜓 → (𝜒𝜓)))
213imp 1109 1 ((𝜑𝜓𝜒) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-frege1 41287
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  ntrclsk3  41569
  Copyright terms: Public domain W3C validator