Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbequ2ALT Structured version   Visualization version   GIF version

Theorem sbequ2ALT 2580
 Description: Alternate version of sbequ2 2251. (Contributed by NM, 16-May-1993.) (Proof shortened by Wolf Lammen, 25-Feb-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
dfsb1.ph (𝜃 ↔ ((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
Assertion
Ref Expression
sbequ2ALT (𝑥 = 𝑦 → (𝜃𝜑))

Proof of Theorem sbequ2ALT
StepHypRef Expression
1 dfsb1.ph . . 3 (𝜃 ↔ ((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
21simplbi 501 . 2 (𝜃 → (𝑥 = 𝑦𝜑))
32com12 32 1 (𝑥 = 𝑦 → (𝜃𝜑))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399  ∃wex 1781 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 210  df-an 400 This theorem is referenced by:  sbequ12ALT  2581  dfsb2ALT  2591  sbequiALT  2596  sbi1ALT  2606
 Copyright terms: Public domain W3C validator