![]() |
Metamath
Proof Explorer Theorem List (p. 26 of 437) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28351) |
![]() (28352-29876) |
![]() (29877-43667) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | sb8 2501 | Substitution of variable in universal quantifier. For a version requiring disjoint variables, but fewer axioms, see sb8v 2321. (Contributed by NM, 16-May-1993.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Jim Kingdon, 15-Jan-2018.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) | ||
Theorem | sb8e 2502 | Substitution of variable in existential quantifier. For a version requiring disjoint variables, but fewer axioms, see sb8ev 2322. (Contributed by NM, 12-Aug-1993.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Jim Kingdon, 15-Jan-2018.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑) | ||
Theorem | sb9 2503 | Commutation of quantification and substitution variables. (Contributed by NM, 5-Aug-1993.) Allow a shortening of sb9i 2504. (Revised by Wolf Lammen, 15-Jun-2019.) |
⊢ (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) | ||
Theorem | sb9i 2504 | Commutation of quantification and substitution variables. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 15-Jun-2019.) |
⊢ (∀𝑥[𝑥 / 𝑦]𝜑 → ∀𝑦[𝑦 / 𝑥]𝜑) | ||
Theorem | ax12vALT 2505* | Alternate proof of ax12v2 2165, shorter, but depending on more axioms. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | ||
Theorem | sb6OLD 2506* | Obsolete proof of sb6 2250 as of 28-Jul-2022. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 21-Sep-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | ||
Theorem | hbs1OLD 2507* | Obsolete version of hbs1 2255 as of 28-Jul-2022. (Contributed by NM, 26-May-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | ||
Theorem | nfs1vOLD 2508* | Obsolete version of nfs1v 2254 as of 28-Jul-2022. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | ||
Theorem | equsb3vOLD 2509* | Obsolete version of equsb3v 2291 as of 19-Jan-2023. (Contributed by Raph Levien and FL, 4-Dec-2005.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ([𝑥 / 𝑦]𝑦 = 𝑧 ↔ 𝑥 = 𝑧) | ||
Theorem | equsb3 2510* | Substitution in an equality. For a version requiring disjoint variables, but fewer axioms, see equsb3v 2291. (Contributed by Raph Levien and FL, 4-Dec-2005.) Remove dependency on ax-11 2150. (Revised by Wolf Lammen, 21-Sep-2018.) |
⊢ ([𝑥 / 𝑦]𝑦 = 𝑧 ↔ 𝑥 = 𝑧) | ||
Theorem | equsb3ALT 2511* | Alternate proof of equsb3 2510, shorter but requiring ax-11 2150. (Contributed by Raph Levien and FL, 4-Dec-2005.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ ([𝑥 / 𝑦]𝑦 = 𝑧 ↔ 𝑥 = 𝑧) | ||
Theorem | elsb3v 2512* | Specialization of elsb3 2513 with an extra distinct variable condition, but no dependency on ax-13 2334. Adapted from equsb3v 2291. (Contributed by Wolf Lammen, 27-Jul-2022.) |
⊢ ([𝑥 / 𝑦]𝑦 ∈ 𝑧 ↔ 𝑥 ∈ 𝑧) | ||
Theorem | elsb3 2513* | Substitution applied to an atomic membership wff. For a version requiring more disjoint variables, but fewer axioms, see elsb3v 2512. (Contributed by NM, 7-Nov-2006.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) Remove dependency on ax-11 2150. (Revised by Wolf Lammen, 27-Jul-2022.) |
⊢ ([𝑥 / 𝑦]𝑦 ∈ 𝑧 ↔ 𝑥 ∈ 𝑧) | ||
Theorem | elsb3OLD 2514* | Obsolete version of elsb3 2513 as of 27-Jul-2022. (Contributed by NM, 7-Nov-2006.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ([𝑥 / 𝑦]𝑦 ∈ 𝑧 ↔ 𝑥 ∈ 𝑧) | ||
Theorem | elsb4v 2515* | Specialization of elsb4 2516 with an extra distinct variable condition, but no dependency on ax-13 2334. Adapted from equsb3v 2291. (Contributed by Wolf Lammen, 28-Jul-2022.) |
⊢ ([𝑥 / 𝑦]𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑥) | ||
Theorem | elsb4 2516* | Substitution applied to an atomic membership wff. For a version requiring more disjoint variables, but fewer axioms, see elsb4v 2515. (Contributed by Rodolfo Medina, 3-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) Remove dependency on ax-11 2150. (Revised by Wolf Lammen, 28-Jul-2022.) |
⊢ ([𝑥 / 𝑦]𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑥) | ||
Theorem | elsb4OLD 2517* | Obsolete version of elsb3 2513 as of 27-Jul-2022. (Contributed by Rodolfo Medina, 3-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ([𝑥 / 𝑦]𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑥) | ||
Theorem | sbhb 2518* | Two ways of expressing "𝑥 is (effectively) not free in 𝜑". (Contributed by NM, 29-May-2009.) |
⊢ ((𝜑 → ∀𝑥𝜑) ↔ ∀𝑦(𝜑 → [𝑦 / 𝑥]𝜑)) | ||
Theorem | sbnf2OLD 2519* | Obsolete version of sbnf2 2326 as of 30-Jan-2023. (Contributed by Gérard Lang, 14-Nov-2013.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 22-Sep-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑦∀𝑧([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑)) | ||
Theorem | nfsb 2520* | If 𝑧 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑 when 𝑦 and 𝑧 are distinct. For a version requiring more disjoint variables, but fewer axioms, see nfsbv 2306. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ Ⅎ𝑧𝜑 ⇒ ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 | ||
Theorem | hbsb 2521* | If 𝑧 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑 when 𝑦 and 𝑧 are distinct. (Contributed by NM, 12-Aug-1993.) |
⊢ (𝜑 → ∀𝑧𝜑) ⇒ ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑) | ||
Theorem | nfsbd 2522* | Deduction version of nfsb 2520. (Contributed by NM, 15-Feb-2013.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Ⅎ𝑧𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜓) | ||
Theorem | sbcom2 2523* | Commutativity law for substitution. Used in proof of Theorem 9.7 of [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 27-May-1997.) (Proof shortened by Wolf Lammen, 23-Dec-2022.) |
⊢ ([𝑤 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑) | ||
Theorem | sbcom2OLD 2524* | Obsolete version of sbcom2 2523 as of 23-Dec-2022. (Contributed by NM, 27-May-1997.) (Proof shortened by Wolf Lammen, 24-Sep-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ([𝑤 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑) | ||
Theorem | sbcom4 2525* | Commutativity law for substitution. This theorem was incorrectly used as our previous version of pm11.07 2526 but may still be useful. (Contributed by Andrew Salmon, 17-Jun-2011.) (Proof shortened by Jim Kingdon, 22-Jan-2018.) |
⊢ ([𝑤 / 𝑥][𝑦 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑) | ||
Theorem | pm11.07 2526 | Axiom *11.07 in [WhiteheadRussell] p. 159. The original reads: *11.07 "Whatever possible argument 𝑥 may be, 𝜑(𝑥, 𝑦) is true whatever possible argument 𝑦 may be" implies the corresponding statement with 𝑥 and 𝑦 interchanged except in "𝜑(𝑥, 𝑦)". Under our formalism this appears to correspond to idi 2 and not to sbcom4 2525 as earlier thought. See https://groups.google.com/d/msg/metamath/iS0fOvSemC8/M1zTH8wxCAAJ. (Contributed by BJ, 16-Sep-2018.) (New usage is discouraged.) |
⊢ 𝜑 ⇒ ⊢ 𝜑 | ||
Theorem | sb6a 2527* | Equivalence for substitution. (Contributed by NM, 2-Jun-1993.) (Proof shortened by Wolf Lammen, 23-Sep-2018.) |
⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → [𝑥 / 𝑦]𝜑)) | ||
Theorem | 2ax6elem 2528 | We can always find values matching 𝑥 and 𝑦, as long as they are represented by distinct variables. This theorem merges two ax6e 2347 instances ∃𝑧𝑧 = 𝑥 and ∃𝑤𝑤 = 𝑦 into a common expression. Alan Sare contributed a variant of this theorem with distinct variable conditions before, see ax6e2nd 39728. (Contributed by Wolf Lammen, 27-Sep-2018.) |
⊢ (¬ ∀𝑤 𝑤 = 𝑧 → ∃𝑧∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦)) | ||
Theorem | 2ax6e 2529* | We can always find values matching 𝑥 and 𝑦, as long as they are represented by distinct variables. Version of 2ax6elem 2528 with a distinct variable constraint. (Contributed by Wolf Lammen, 28-Sep-2018.) |
⊢ ∃𝑧∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦) | ||
Theorem | 2sb5rf 2530* | Reversed double substitution. (Contributed by NM, 3-Feb-2005.) (Revised by Mario Carneiro, 6-Oct-2016.) Remove distinct variable constraints. (Revised by Wolf Lammen, 28-Sep-2018.) |
⊢ Ⅎ𝑧𝜑 & ⊢ Ⅎ𝑤𝜑 ⇒ ⊢ (𝜑 ↔ ∃𝑧∃𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)) | ||
Theorem | 2sb6rf 2531* | Reversed double substitution. (Contributed by NM, 3-Feb-2005.) (Revised by Mario Carneiro, 6-Oct-2016.) Remove variable constraints. (Revised by Wolf Lammen, 28-Sep-2018.) (Proof shortened by Wolf Lammen, 13-Apr-2023.) |
⊢ Ⅎ𝑧𝜑 & ⊢ Ⅎ𝑤𝜑 ⇒ ⊢ (𝜑 ↔ ∀𝑧∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)) | ||
Theorem | 2sb6rfOLD 2532* | Obsolete version of 2sb6rf 2531 as of 13-Apr-2023. (Contributed by NM, 3-Feb-2005.) (Revised by Mario Carneiro, 6-Oct-2016.) Remove variable constraints. (Revised by Wolf Lammen, 28-Sep-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ Ⅎ𝑧𝜑 & ⊢ Ⅎ𝑤𝜑 ⇒ ⊢ (𝜑 ↔ ∀𝑧∀𝑤((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)) | ||
Theorem | sb7f 2533* | This version of dfsb7 2535 does not require that 𝜑 and 𝑧 be distinct. This permits it to be used as a definition for substitution in a formalization that omits the logically redundant axiom ax-5 1953 i.e. that doesn't have the concept of a variable not occurring in a wff. (df-sb 2012 is also suitable, but its mixing of free and bound variables is distasteful to some logicians.) (Contributed by NM, 26-Jul-2006.) (Revised by Mario Carneiro, 6-Oct-2016.) |
⊢ Ⅎ𝑧𝜑 ⇒ ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑧(𝑧 = 𝑦 ∧ ∃𝑥(𝑥 = 𝑧 ∧ 𝜑))) | ||
Theorem | sb7h 2534* | This version of dfsb7 2535 does not require that 𝜑 and 𝑧 be distinct. This permits it to be used as a definition for substitution in a formalization that omits the logically redundant axiom ax-5 1953 i.e. that doesn't have the concept of a variable not occurring in a wff. (df-sb 2012 is also suitable, but its mixing of free and bound variables is distasteful to some logicians.) (Contributed by NM, 26-Jul-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
⊢ (𝜑 → ∀𝑧𝜑) ⇒ ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑧(𝑧 = 𝑦 ∧ ∃𝑥(𝑥 = 𝑧 ∧ 𝜑))) | ||
Theorem | dfsb7 2535* | An alternate definition of proper substitution df-sb 2012. By introducing a dummy variable 𝑧 in the definiens, we are able to eliminate any distinct variable restrictions among the variables 𝑥, 𝑦, and 𝜑 of the definiendum. No distinct variable conflicts arise because 𝑧 effectively insulates 𝑥 from 𝑦. To achieve this, we use a chain of two substitutions in the form of sb5 2251, first 𝑧 for 𝑥 then 𝑦 for 𝑧. Compare Definition 2.1'' of [Quine] p. 17, which is obtained from this theorem by applying df-clab 2764. Theorem sb7h 2534 provides a version where 𝜑 and 𝑧 don't have to be distinct. (Contributed by NM, 28-Jan-2004.) |
⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑧(𝑧 = 𝑦 ∧ ∃𝑥(𝑥 = 𝑧 ∧ 𝜑))) | ||
Theorem | sb10f 2536* | Hao Wang's identity axiom P6 in Irving Copi, Symbolic Logic (5th ed., 1979), p. 328. In traditional predicate calculus, this is a sole axiom for identity from which the usual ones can be derived. (Contributed by NM, 9-May-2005.) (Revised by Mario Carneiro, 6-Oct-2016.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ ([𝑦 / 𝑧]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ [𝑥 / 𝑧]𝜑)) | ||
Theorem | sbelx 2537* | Elimination of substitution. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ [𝑥 / 𝑦]𝜑)) | ||
Theorem | sbel2x 2538* | Elimination of double substitution. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 29-Sep-2018.) |
⊢ (𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ∧ [𝑦 / 𝑤][𝑥 / 𝑧]𝜑)) | ||
Theorem | sbal1 2539* | A theorem used in elimination of disjoint variable restriction on 𝑥 and 𝑦 by replacing it with a distinctor ¬ ∀𝑥𝑥 = 𝑧. (Contributed by NM, 15-May-1993.) (Proof shortened by Wolf Lammen, 3-Oct-2018.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑧 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)) | ||
Theorem | sbal2 2540* | Move quantifier in and out of substitution. (Contributed by NM, 2-Jan-2002.) Remove a distinct variable constraint. (Revised by Wolf Lammen, 24-Dec-2022.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)) | ||
Theorem | sbal2OLD 2541* | Obsolete version of sbal2 2540 as of 24-Dec-2022. (Contributed by NM, 2-Jan-2002.) Remove a distinct variable constraint. (Revised by Wolf Lammen, 3-Oct-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)) | ||
Theorem | sbal 2542* | Move universal quantifier in and out of substitution. (Contributed by NM, 16-May-1993.) (Proof shortened by Wolf Lammen, 29-Sep-2018.) |
⊢ ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑) | ||
Theorem | sbex 2543* | Move existential quantifier in and out of substitution. (Contributed by NM, 27-Sep-2003.) |
⊢ ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑) | ||
Theorem | sbalv 2544* | Quantify with new variable inside substitution. (Contributed by NM, 18-Aug-1993.) |
⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) ⇒ ⊢ ([𝑦 / 𝑥]∀𝑧𝜑 ↔ ∀𝑧𝜓) | ||
Theorem | sbco4lem 2545* | Lemma for sbco4 2546. It replaces the temporary variable 𝑣 with another temporary variable 𝑤. (Contributed by Jim Kingdon, 26-Sep-2018.) |
⊢ ([𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑) | ||
Theorem | sbco4 2546* | Two ways of exchanging two variables. Both sides of the biconditional exchange 𝑥 and 𝑦, either via two temporary variables 𝑢 and 𝑣, or a single temporary 𝑤. (Contributed by Jim Kingdon, 25-Sep-2018.) |
⊢ ([𝑦 / 𝑢][𝑥 / 𝑣][𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑) | ||
Theorem | 2sb8e 2547* | An equivalent expression for double existence. For a version requiring more disjoint variables, but fewer axioms, see 2sb8ev 2323. (Contributed by Wolf Lammen, 2-Nov-2019.) |
⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑧∃𝑤[𝑧 / 𝑥][𝑤 / 𝑦]𝜑) | ||
Theorem | exsbOLD 2548* | Obsolete version of exsb 2327 as of 16-Oct-2022. (Contributed by NM, 2-Feb-2005.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∃𝑥𝜑 ↔ ∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑)) | ||
Syntax | wmo 2549 | Extend wff definition to include the at-most-one quantifier ("there exists at most one 𝑥 such that 𝜑"). |
wff ∃*𝑥𝜑 | ||
Theorem | mojust 2550* | Soundness justification theorem for df-mo 2551 (note that 𝑦 and 𝑧 need not be disjoint, although the weaker theorem with that disjoint variable condition added would be enough to justify the soundness of the definition). (Contributed by NM, 11-Mar-2010.) Added this theorem by adapting the proof of eujust 2589. (Revised by BJ, 30-Sep-2022.) |
⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) ↔ ∃𝑧∀𝑥(𝜑 → 𝑥 = 𝑧)) | ||
Definition | df-mo 2551* |
Define the at-most-one quantifier. The expression ∃*𝑥𝜑 is read
"there exists at most one 𝑥 such that 𝜑". This is also
called
the "uniqueness quantifier" but that expression is also used
for the
unique existential quantifier df-eu 2587, therefore we avoid that
ambiguous name.
Notation of [BellMachover] p. 460, whose definition we show as mo3 2580. For other possible definitions see moeu 2603 and mo4 2585. (Contributed by Wolf Lammen, 27-May-2019.) Make this the definition (which used to be moeu 2603, while this definition was then proved as dfmo 2615). (Revised by BJ, 30-Sep-2022.) |
⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | ||
Theorem | nexmo 2552 | Nonexistence implies uniqueness. (Contributed by BJ, 30-Sep-2022.) Avoid ax-11 2150. (Revised by Wolf Lammen, 16-Oct-2022.) |
⊢ (¬ ∃𝑥𝜑 → ∃*𝑥𝜑) | ||
Theorem | nexmoOLD 2553 | Obsolete version of nexmo 2552 as of 16-Oct-2022. (Contributed by BJ, 30-Sep-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (¬ ∃𝑥𝜑 → ∃*𝑥𝜑) | ||
Theorem | exmo 2554 | Any proposition holds for some 𝑥 or holds for at most one 𝑥. (Contributed by NM, 8-Mar-1995.) Shorten proof and avoid df-eu 2587. (Revised by BJ, 14-Oct-2022.) |
⊢ (∃𝑥𝜑 ∨ ∃*𝑥𝜑) | ||
Theorem | moabs 2555 | Absorption of existence condition by uniqueness. (Contributed by NM, 4-Nov-2002.) Shorten proof and avoid df-eu 2587. (Revised by BJ, 14-Oct-2022.) |
⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃*𝑥𝜑)) | ||
Theorem | moim 2556 | The at-most-one quantifier reverses implication. (Contributed by NM, 22-Apr-1995.) |
⊢ (∀𝑥(𝜑 → 𝜓) → (∃*𝑥𝜓 → ∃*𝑥𝜑)) | ||
Theorem | moimi 2557 | The at-most-one quantifier reverses implication. (Contributed by NM, 15-Feb-2006.) Remove use of ax-5 1953. (Revised by Steven Nguyen, 9-May-2023.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ (∃*𝑥𝜓 → ∃*𝑥𝜑) | ||
Theorem | moimiOLD 2558 | Obsolete version of moimi 2557 as of 9-May-2023. The at-most-one quantifier reverses implication. (Contributed by NM, 15-Feb-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ (∃*𝑥𝜓 → ∃*𝑥𝜑) | ||
Theorem | moimdv 2559* | The at-most-one quantifier reverses implication, deduction form. (Contributed by Thierry Arnoux, 25-Feb-2017.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∃*𝑥𝜒 → ∃*𝑥𝜓)) | ||
Theorem | mobi 2560 | Equivalence theorem for the at-most-one quantifier. (Contributed by BJ, 7-Oct-2022.) (Proof shortened by Wolf Lammen, 18-Feb-2023.) |
⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∃*𝑥𝜑 ↔ ∃*𝑥𝜓)) | ||
Theorem | mobiOLD 2561 | Obsolete version of mobi 2560 as of 18-Feb-2023. (Contributed by BJ, 7-Oct-2022.) (Proof shortened by Wolf Lammen, 16-Oct-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∃*𝑥𝜑 ↔ ∃*𝑥𝜓)) | ||
Theorem | mobiOLDOLD 2562 | Obsolete proof of mobi 2560 as of 15-Oct-2022. (Contributed by BJ, 7-Oct-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∃*𝑥𝜑 ↔ ∃*𝑥𝜓)) | ||
Theorem | mobii 2563 | Formula-building rule for the at-most-one quantifier (inference form). (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 17-Oct-2016.) |
⊢ (𝜓 ↔ 𝜒) ⇒ ⊢ (∃*𝑥𝜓 ↔ ∃*𝑥𝜒) | ||
Theorem | mobidv 2564* | Formula-building rule for the at-most-one quantifier (deduction form). (Contributed by Mario Carneiro, 7-Oct-2016.) Reduce axiom dependencies and shorten proof. (Revised by BJ, 7-Oct-2022.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) | ||
Theorem | mobid 2565 | Formula-building rule for the at-most-one quantifier (deduction form). (Contributed by NM, 8-Mar-1995.) Remove dependency on ax-10 2135, ax-11 2150, ax-13 2334. (Revised by BJ, 14-Oct-2022.) (Proof shortened by Wolf Lammen, 18-Feb-2023.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) | ||
Theorem | mobidOLD 2566 | Obsolete version of mobid 2565 as of 18-Feb-2023. (Contributed by NM, 8-Mar-1995.) Remove dependency on ax-10 2135, ax-11 2150, ax-13 2334. (Revised by BJ, 14-Oct-2022.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) | ||
Theorem | moa1 2567 | If an implication holds for at most one value, then its consequent holds for at most one value. See also ala1 1857 and exa1 1881. (Contributed by NM, 28-Jul-1995.) (Proof shortened by Wolf Lammen, 22-Dec-2018.) (Revised by BJ, 29-Mar-2021.) |
⊢ (∃*𝑥(𝜑 → 𝜓) → ∃*𝑥𝜓) | ||
Theorem | moan 2568 | "At most one" is still the case when a conjunct is added. (Contributed by NM, 22-Apr-1995.) |
⊢ (∃*𝑥𝜑 → ∃*𝑥(𝜓 ∧ 𝜑)) | ||
Theorem | moani 2569 | "At most one" is still true when a conjunct is added. (Contributed by NM, 9-Mar-1995.) |
⊢ ∃*𝑥𝜑 ⇒ ⊢ ∃*𝑥(𝜓 ∧ 𝜑) | ||
Theorem | moor 2570 | "At most one" is still the case when a disjunct is removed. (Contributed by NM, 5-Apr-2004.) |
⊢ (∃*𝑥(𝜑 ∨ 𝜓) → ∃*𝑥𝜑) | ||
Theorem | mooran1 2571 | "At most one" imports disjunction to conjunction. (Contributed by NM, 5-Apr-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
⊢ ((∃*𝑥𝜑 ∨ ∃*𝑥𝜓) → ∃*𝑥(𝜑 ∧ 𝜓)) | ||
Theorem | mooran2 2572 | "At most one" exports disjunction to conjunction. (Contributed by NM, 5-Apr-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
⊢ (∃*𝑥(𝜑 ∨ 𝜓) → (∃*𝑥𝜑 ∧ ∃*𝑥𝜓)) | ||
Theorem | nfmo1 2573 | Bound-variable hypothesis builder for the at-most-one quantifier. (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 7-Oct-2016.) Adapt to new definition. (Revised by BJ, 1-Oct-2022.) |
⊢ Ⅎ𝑥∃*𝑥𝜑 | ||
Theorem | nfmod2 2574 | Bound-variable hypothesis builder for the at-most-one quantifier. (Contributed by Mario Carneiro, 14-Nov-2016.) Avoid df-eu 2587. (Revised by BJ, 14-Oct-2022.) |
⊢ Ⅎ𝑦𝜑 & ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥∃*𝑦𝜓) | ||
Theorem | nfmodv 2575* | Bound-variable hypothesis builder for the at-most-one quantifier. See nfmod 2576 for a version without disjoint variable conditions but requiring ax-13 2334. (Contributed by BJ, 28-Jan-2023.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥∃*𝑦𝜓) | ||
Theorem | nfmod 2576 | Bound-variable hypothesis builder for the at-most-one quantifier. Deduction version of nfmo 2577. (Contributed by Mario Carneiro, 14-Nov-2016.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥∃*𝑦𝜓) | ||
Theorem | nfmo 2577 | Bound-variable hypothesis builder for the at-most-one quantifier. Note that 𝑥 and 𝑦 need not be disjoint. (Contributed by NM, 9-Mar-1995.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥∃*𝑦𝜑 | ||
Theorem | mof 2578* | Version of df-mo 2551 with disjoint variable condition replaced by nonfreeness hypothesis. (Contributed by NM, 8-Mar-1995.) Extract dfmo 2615 from this proof, and prove mof 2578 from it (as of 30-Sep-2022, directly from df-mo 2551). (Revised by Wolf Lammen, 28-May-2019.) Avoid ax-13 2334. (Revised by Wolf Lammen, 16-Oct-2022.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | ||
Theorem | mofOLD 2579* | Obsolete version of mof 2578 as of 16-Oct-2022. (Contributed by NM, 8-Mar-1995.) Extract dfmo 2615 from this proof, and prove mof 2578 from it (as of 30-Sep-2022, directly from df-mo 2551). (Revised by Wolf Lammen, 28-May-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | ||
Theorem | mo3 2580* | Alternate definition of the at-most-one quantifier. Definition of [BellMachover] p. 460, except that definition has the side condition that 𝑦 not occur in 𝜑 in place of our hypothesis. (Contributed by NM, 8-Mar-1995.) (Proof shortened by Wolf Lammen, 18-Aug-2019.) Remove dependency on ax-13 2334. (Revised by BJ and WL, 29-Jan-2023.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) | ||
Theorem | mo3OLD 2581* | Obsolete version of mo3 2580 as of 29-Jan-2023. (Contributed by NM, 8-Mar-1995.) (Proof shortened by Wolf Lammen, 18-Aug-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) | ||
Theorem | mo 2582* | Equivalent definitions of "there exists at most one". (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 2-Dec-2018.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) ↔ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) | ||
Theorem | mo4f 2583* | At-most-one quantifier expressed using implicit substitution. Note that the disjoint variable condition on 𝑦, 𝜑 can be replaced by the nonfreeness hypothesis ⊢ Ⅎ𝑦𝜑 with essentially the same proof. (Contributed by NM, 10-Apr-2004.) Remove dependency on ax-13 2334. (Revised by Wolf Lammen, 19-Jan-2023.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) | ||
Theorem | mo4fOLD 2584* | Obsolete version of mo4f 2583 as of 19-Jan-2023. (Contributed by NM, 10-Apr-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) | ||
Theorem | mo4 2585* | At-most-one quantifier expressed using implicit substitution. (Contributed by NM, 26-Jul-1995.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) | ||
Syntax | weu 2586 | Extend wff definition to include the unique existential quantifier ("there exists a unique 𝑥 such that 𝜑"). |
wff ∃!𝑥𝜑 | ||
Definition | df-eu 2587 |
Define the existential uniqueness quantifier. This expresses unique
existence, or existential uniqueness, which is the conjunction of
existence (df-ex 1824) and uniqueness (df-mo 2551). The expression
∃!𝑥𝜑 is read "there exists exactly
one 𝑥 such that 𝜑 " or
"there exists a unique 𝑥 such that 𝜑". This is also
called the
"uniqueness quantifier" but that expression is also used for the
at-most-one quantifier df-mo 2551, therefore we avoid that ambiguous name.
Definition 10.1 of [BellMachover] p. 97; also Definition *14.02 of [WhiteheadRussell] p. 175. Other possible definitions are given by eu1 2642, eu2 2641, eu3v 2588, and eu6 2592. As for double unique existence, beware that the expression ∃!𝑥∃!𝑦𝜑 means "there exists a unique 𝑥 such that there exists a unique 𝑦 such that 𝜑 " which is a weaker property than "there exists exactly one 𝑥 and one 𝑦 such that 𝜑 " (see 2eu4 2685). (Contributed by NM, 12-Aug-1993.) Make this the definition (which used to be eu6 2592, while this definition was then proved as dfeu 2614). (Revised by BJ, 30-Sep-2022.) |
⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | ||
Theorem | eu3v 2588* | An alternate way to express existential uniqueness. (Contributed by NM, 8-Jul-1994.) Replace a nonfreeness hypothesis with a disjoint variable condition on 𝜑, 𝑦 to reduce axiom usage. (Revised by Wolf Lammen, 29-May-2019.) |
⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) | ||
Theorem | eujust 2589* | Soundness justification theorem for eu6 2592 when this was the definition of the unique existential quantifier (note that 𝑦 and 𝑧 need not be disjoint, although the weaker theorem with that disjoint variable condition added would be enough to justify the soundness of the definition). See eujustALT 2590 for a proof that provides an example of how it can be achieved through the use of dvelim 2417. (Contributed by NM, 11-Mar-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) | ||
Theorem | eujustALT 2590* | Alternate proof of eujust 2589 illustrating the use of dvelim 2417. (Contributed by NM, 11-Mar-2010.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) | ||
Theorem | eu6lem 2591* | Proof lines shared by eu6 2592 and eu6im 2593. (Contributed by NM, 12-Aug-1993.) This used to be the definition of the unique existential quantifier, while df-eu 2587 was then proved as dfeu 2614. (Revised by BJ, 30-Sep-2022.) (Proof shortened by Wolf Lammen, 3-Jan-2023.) Extract common proof lines. (Revised by Wolf Lammen, 3-Mar-2023.) |
⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ (∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∃𝑧∀𝑥(𝜑 → 𝑥 = 𝑧))) | ||
Theorem | eu6 2592* | Alternate definition of the unique existential quantifier df-eu 2587 not using the at-most-one quantifier. (Contributed by NM, 12-Aug-1993.) This used to be the definition of the unique existential quantifier, while df-eu 2587 was then proved as dfeu 2614. (Revised by BJ, 30-Sep-2022.) (Proof shortened by Wolf Lammen, 3-Jan-2023.) |
⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | ||
Theorem | eu6im 2593* | One direction of eu6 2592 needs fewer axioms. (Contributed by Wolf Lammen, 2-Mar-2023.) |
⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃!𝑥𝜑) | ||
Theorem | eu6OLD 2594* | Obsolete version of eu6 2592 as of 28-Dec-2022. (Contributed by NM, 12-Aug-1993.) This used to be the definition of the unique existential quantifier, while df-eu 2587 was then proved as dfeu 2614. (Revised by BJ, 30-Sep-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | ||
Theorem | euf 2595* | Version of eu6 2592 with disjoint variable condition replaced by nonfreeness hypothesis. (Contributed by NM, 12-Aug-1993.) (Proof shortened by Wolf Lammen, 30-Oct-2018.) Avoid ax-13 2334. (Revised by Wolf Lammen, 16-Oct-2022.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | ||
Theorem | eufOLD 2596* | Obsolete version of euf 2595 as of 16-Oct-2022. (Contributed by NM, 12-Aug-1993.) (Proof shortened by Wolf Lammen, 30-Oct-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | ||
Theorem | euex 2597 | Existential uniqueness implies existence. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) (Proof shortened by Wolf Lammen, 4-Dec-2018.) (Proof shortened by BJ, 7-Oct-2022.) |
⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) | ||
Theorem | eumo 2598 | Existential uniqueness implies uniqueness. (Contributed by NM, 23-Mar-1995.) |
⊢ (∃!𝑥𝜑 → ∃*𝑥𝜑) | ||
Theorem | eumoi 2599 | Uniqueness inferred from existential uniqueness. (Contributed by NM, 5-Apr-1995.) |
⊢ ∃!𝑥𝜑 ⇒ ⊢ ∃*𝑥𝜑 | ||
Theorem | exmoeub 2600 | Existence implies that uniqueness is equivalent to unique existence. (Contributed by NM, 5-Apr-2004.) |
⊢ (∃𝑥𝜑 → (∃*𝑥𝜑 ↔ ∃!𝑥𝜑)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |