| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbequ2 | Structured version Visualization version GIF version | ||
| Description: An equality theorem for substitution. (Contributed by NM, 16-May-1993.) Revise df-sb 2065. (Revised by BJ, 22-Dec-2020.) (Proof shortened by Wolf Lammen, 3-Feb-2024.) |
| Ref | Expression |
|---|---|
| sbequ2 | ⊢ (𝑥 = 𝑡 → ([𝑡 / 𝑥]𝜑 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sb 2065 | . . . 4 ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
| 2 | 1 | biimpi 216 | . . 3 ⊢ ([𝑡 / 𝑥]𝜑 → ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| 3 | equvinva 2029 | . . 3 ⊢ (𝑥 = 𝑡 → ∃𝑦(𝑥 = 𝑦 ∧ 𝑡 = 𝑦)) | |
| 4 | equcomi 2016 | . . . . . 6 ⊢ (𝑡 = 𝑦 → 𝑦 = 𝑡) | |
| 5 | sp 2183 | . . . . . 6 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → (𝑥 = 𝑦 → 𝜑)) | |
| 6 | 4, 5 | imim12i 62 | . . . . 5 ⊢ ((𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) → (𝑡 = 𝑦 → (𝑥 = 𝑦 → 𝜑))) |
| 7 | 6 | impcomd 411 | . . . 4 ⊢ ((𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) → ((𝑥 = 𝑦 ∧ 𝑡 = 𝑦) → 𝜑)) |
| 8 | 7 | aleximi 1832 | . . 3 ⊢ (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) → (∃𝑦(𝑥 = 𝑦 ∧ 𝑡 = 𝑦) → ∃𝑦𝜑)) |
| 9 | 2, 3, 8 | syl2im 40 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 → (𝑥 = 𝑡 → ∃𝑦𝜑)) |
| 10 | ax5e 1912 | . 2 ⊢ (∃𝑦𝜑 → 𝜑) | |
| 11 | 9, 10 | syl6com 37 | 1 ⊢ (𝑥 = 𝑡 → ([𝑡 / 𝑥]𝜑 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 ∃wex 1779 [wsb 2064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 |
| This theorem is referenced by: stdpc7 2250 sbequ12 2251 sb4a 2485 dfsb1 2486 dfsb2 2498 bj-ssbid2 36663 2pm13.193 44572 2pm13.193VD 44923 |
| Copyright terms: Public domain | W3C validator |