MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbequ2 Structured version   Visualization version   GIF version

Theorem sbequ2 2252
Description: An equality theorem for substitution. (Contributed by NM, 16-May-1993.) Revise df-sb 2068. (Revised by BJ, 22-Dec-2020.) (Proof shortened by Wolf Lammen, 3-Feb-2024.)
Assertion
Ref Expression
sbequ2 (𝑥 = 𝑡 → ([𝑡 / 𝑥]𝜑𝜑))

Proof of Theorem sbequ2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-sb 2068 . . . 4 ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
21biimpi 216 . . 3 ([𝑡 / 𝑥]𝜑 → ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
3 equvinva 2031 . . 3 (𝑥 = 𝑡 → ∃𝑦(𝑥 = 𝑦𝑡 = 𝑦))
4 equcomi 2018 . . . . . 6 (𝑡 = 𝑦𝑦 = 𝑡)
5 sp 2186 . . . . . 6 (∀𝑥(𝑥 = 𝑦𝜑) → (𝑥 = 𝑦𝜑))
64, 5imim12i 62 . . . . 5 ((𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)) → (𝑡 = 𝑦 → (𝑥 = 𝑦𝜑)))
76impcomd 411 . . . 4 ((𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)) → ((𝑥 = 𝑦𝑡 = 𝑦) → 𝜑))
87aleximi 1833 . . 3 (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)) → (∃𝑦(𝑥 = 𝑦𝑡 = 𝑦) → ∃𝑦𝜑))
92, 3, 8syl2im 40 . 2 ([𝑡 / 𝑥]𝜑 → (𝑥 = 𝑡 → ∃𝑦𝜑))
10 ax5e 1913 . 2 (∃𝑦𝜑𝜑)
119, 10syl6com 37 1 (𝑥 = 𝑡 → ([𝑡 / 𝑥]𝜑𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1539  wex 1780  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-12 2180
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068
This theorem is referenced by:  stdpc7  2253  sbequ12  2254  sb4a  2480  dfsb1  2481  dfsb2  2493  bj-ssbid2  36696  2pm13.193  44585  2pm13.193VD  44935
  Copyright terms: Public domain W3C validator