Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uun123p2 Structured version   Visualization version   GIF version

Theorem uun123p2 42400
Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
uun123p2.1 ((𝜒𝜑𝜓) → 𝜃)
Assertion
Ref Expression
uun123p2 ((𝜑𝜓𝜒) → 𝜃)

Proof of Theorem uun123p2
StepHypRef Expression
1 uun123p2.1 . 2 ((𝜒𝜑𝜓) → 𝜃)
213coml 1126 1 ((𝜑𝜓𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator