| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3coml | Structured version Visualization version GIF version | ||
| Description: Commutation in antecedent. Rotate left. (Contributed by NM, 28-Jan-1996.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3coml | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3com23 1126 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
| 3 | 2 | 3com13 1124 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: spc3egv 3558 omwordri 8487 oeword 8505 f1oen2g 8891 f1dom2g 8892 f1imaenfi 9104 ordiso 9402 en3lplem2 9503 axdc3lem4 10341 ltasr 10988 adddir 11100 axltadd 11183 pnpcan2 11398 subdir 11548 ltaddsub 11588 leaddsub 11590 mulcan2g 11768 div13 11794 ltdiv2 12005 lediv2 12009 zdiv 12540 xadddir 13192 xadddi2r 13194 fzen 13438 fzrevral2 13510 fzshftral 13512 ssfzoulel 13657 fzind2 13685 flflp1 13708 mulbinom2 14127 digit1 14141 faclbnd5 14202 ccatlcan 14622 elicc4abs 15224 dvdsnegb 16181 muldvds1 16188 muldvds2 16189 dvdscmul 16190 dvdsmulc 16191 dvdscmulr 16192 dvdsmulcr 16193 dvdsgcd 16452 mulgcdr 16458 lcmgcdeq 16520 congr 16572 mulgnnass 19019 gaass 19207 elfm3 23863 mettri 24265 cnmet 24684 addcnlem 24778 bcthlem5 25253 isppw2 27050 vmappw 27051 bcmono 27213 sletr 27695 sltadd1im 27926 colinearalg 28886 ax5seglem1 28904 ax5seglem2 28905 vcdir 30541 vcass 30542 imsmetlem 30665 hvaddcan2 31046 hvsubcan2 31050 dfgcd3 37357 isbasisrelowllem1 37388 ltflcei 37647 fzmul 37780 brcnvrabga 38369 pclfinclN 39988 rabrenfdioph 42846 uun123p2 44841 isosctrlem1ALT 44965 |
| Copyright terms: Public domain | W3C validator |