| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3coml | Structured version Visualization version GIF version | ||
| Description: Commutation in antecedent. Rotate left. (Contributed by NM, 28-Jan-1996.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3coml | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3com23 1126 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
| 3 | 2 | 3com13 1124 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: spc3egv 3582 omwordri 8584 oeword 8602 f1oen2g 8983 f1dom2g 8984 f1imaenfi 9209 ordiso 9530 en3lplem2 9627 axdc3lem4 10467 ltasr 11114 adddir 11226 axltadd 11308 pnpcan2 11523 subdir 11671 ltaddsub 11711 leaddsub 11713 mulcan2g 11891 div13 11917 ltdiv2 12128 lediv2 12132 zdiv 12663 xadddir 13312 xadddi2r 13314 fzen 13558 fzrevral2 13630 fzshftral 13632 ssfzoulel 13776 fzind2 13801 flflp1 13824 mulbinom2 14241 digit1 14255 faclbnd5 14316 ccatlcan 14736 elicc4abs 15338 dvdsnegb 16293 muldvds1 16300 muldvds2 16301 dvdscmul 16302 dvdsmulc 16303 dvdscmulr 16304 dvdsmulcr 16305 dvdsgcd 16563 mulgcdr 16569 lcmgcdeq 16631 congr 16683 mulgnnass 19092 gaass 19280 elfm3 23888 mettri 24291 cnmet 24710 addcnlem 24804 bcthlem5 25280 isppw2 27077 vmappw 27078 bcmono 27240 sletr 27722 sltadd1im 27944 colinearalg 28889 ax5seglem1 28907 ax5seglem2 28908 vcdir 30547 vcass 30548 imsmetlem 30671 hvaddcan2 31052 hvsubcan2 31056 dfgcd3 37342 isbasisrelowllem1 37373 ltflcei 37632 fzmul 37765 brcnvrabga 38360 pclfinclN 39969 rabrenfdioph 42837 uun123p2 44834 isosctrlem1ALT 44958 |
| Copyright terms: Public domain | W3C validator |