![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3coml | Structured version Visualization version GIF version |
Description: Commutation in antecedent. Rotate left. (Contributed by NM, 28-Jan-1996.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3coml | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3com23 1125 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
3 | 2 | 3com13 1123 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: spc3egv 3603 omwordri 8609 oeword 8627 f1oen2g 9008 f1dom2g 9009 f1imaenfi 9233 ordiso 9554 en3lplem2 9651 axdc3lem4 10491 ltasr 11138 adddir 11250 axltadd 11332 pnpcan2 11547 subdir 11695 ltaddsub 11735 leaddsub 11737 mulcan2g 11915 div13 11941 ltdiv2 12152 lediv2 12156 zdiv 12686 xadddir 13335 xadddi2r 13337 fzen 13578 fzrevral2 13650 fzshftral 13652 ssfzoulel 13796 fzind2 13821 flflp1 13844 mulbinom2 14259 digit1 14273 faclbnd5 14334 ccatlcan 14753 elicc4abs 15355 dvdsnegb 16308 muldvds1 16315 muldvds2 16316 dvdscmul 16317 dvdsmulc 16318 dvdscmulr 16319 dvdsmulcr 16320 dvdsgcd 16578 mulgcdr 16584 lcmgcdeq 16646 congr 16698 mulgnnass 19140 gaass 19328 elfm3 23974 mettri 24378 cnmet 24808 addcnlem 24900 bcthlem5 25376 isppw2 27173 vmappw 27174 bcmono 27336 sletr 27818 sltadd1im 28033 colinearalg 28940 ax5seglem1 28958 ax5seglem2 28959 vcdir 30595 vcass 30596 imsmetlem 30719 hvaddcan2 31100 hvsubcan2 31104 dfgcd3 37307 isbasisrelowllem1 37338 ltflcei 37595 fzmul 37728 brcnvrabga 38324 pclfinclN 39933 rabrenfdioph 42802 uun123p2 44808 isosctrlem1ALT 44932 |
Copyright terms: Public domain | W3C validator |