| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3coml | Structured version Visualization version GIF version | ||
| Description: Commutation in antecedent. Rotate left. (Contributed by NM, 28-Jan-1996.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3coml | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3com23 1126 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
| 3 | 2 | 3com13 1124 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: spc3egv 3554 omwordri 8493 oeword 8511 f1oen2g 8897 f1dom2g 8898 f1imaenfi 9111 ordiso 9409 en3lplem2 9510 axdc3lem4 10351 ltasr 10998 adddir 11110 axltadd 11193 pnpcan2 11408 subdir 11558 ltaddsub 11598 leaddsub 11600 mulcan2g 11778 div13 11804 ltdiv2 12015 lediv2 12019 zdiv 12549 xadddir 13197 xadddi2r 13199 fzen 13443 fzrevral2 13515 fzshftral 13517 ssfzoulel 13662 fzind2 13690 flflp1 13713 mulbinom2 14132 digit1 14146 faclbnd5 14207 ccatlcan 14627 elicc4abs 15229 dvdsnegb 16186 muldvds1 16193 muldvds2 16194 dvdscmul 16195 dvdsmulc 16196 dvdscmulr 16197 dvdsmulcr 16198 dvdsgcd 16457 mulgcdr 16463 lcmgcdeq 16525 congr 16577 mulgnnass 19024 gaass 19211 elfm3 23866 mettri 24268 cnmet 24687 addcnlem 24781 bcthlem5 25256 isppw2 27053 vmappw 27054 bcmono 27216 sletr 27698 sltadd1im 27929 colinearalg 28890 ax5seglem1 28908 ax5seglem2 28909 vcdir 30548 vcass 30549 imsmetlem 30672 hvaddcan2 31053 hvsubcan2 31057 dfgcd3 37389 isbasisrelowllem1 37420 ltflcei 37669 fzmul 37802 brcnvrabga 38395 pclfinclN 40070 rabrenfdioph 42932 uun123p2 44927 isosctrlem1ALT 45051 |
| Copyright terms: Public domain | W3C validator |