Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3coml | Structured version Visualization version GIF version |
Description: Commutation in antecedent. Rotate left. (Contributed by NM, 28-Jan-1996.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3coml | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3com23 1125 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
3 | 2 | 3com13 1123 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: spc3egv 3542 omwordri 8403 oeword 8421 f1oen2g 8756 f1dom2g 8757 f1dom2gOLD 8758 f1imaenfi 8981 ordiso 9275 en3lplem2 9371 axdc3lem4 10209 ltasr 10856 adddir 10966 axltadd 11048 pnpcan2 11261 subdir 11409 ltaddsub 11449 leaddsub 11451 mulcan2g 11629 div13 11654 ltdiv2 11861 lediv2 11865 zdiv 12390 xadddir 13030 xadddi2r 13032 fzen 13273 fzrevral2 13342 fzshftral 13344 ssfzoulel 13481 fzind2 13505 flflp1 13527 mulbinom2 13938 digit1 13952 faclbnd5 14012 ccatlcan 14431 elicc4abs 15031 dvdsnegb 15983 muldvds1 15990 muldvds2 15991 dvdscmul 15992 dvdsmulc 15993 dvdscmulr 15994 dvdsmulcr 15995 dvdsgcd 16252 mulgcdr 16258 lcmgcdeq 16317 congr 16369 mulgnnass 18738 gaass 18903 elfm3 23101 mettri 23505 cnmet 23935 addcnlem 24027 bcthlem5 24492 isppw2 26264 vmappw 26265 bcmono 26425 colinearalg 27278 ax5seglem1 27296 ax5seglem2 27297 vcdir 28928 vcass 28929 imsmetlem 29052 hvaddcan2 29433 hvsubcan2 29437 sletr 33961 dfgcd3 35495 isbasisrelowllem1 35526 ltflcei 35765 fzmul 35899 brcnvrabga 36477 pclfinclN 37964 rabrenfdioph 40636 uun123p2 42430 isosctrlem1ALT 42554 |
Copyright terms: Public domain | W3C validator |