![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3coml | Structured version Visualization version GIF version |
Description: Commutation in antecedent. Rotate left. (Contributed by NM, 28-Jan-1996.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3coml | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3com23 1126 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
3 | 2 | 3com13 1124 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: spc3egv 3616 omwordri 8628 oeword 8646 f1oen2g 9028 f1dom2g 9029 f1dom2gOLD 9030 f1imaenfi 9261 ordiso 9585 en3lplem2 9682 axdc3lem4 10522 ltasr 11169 adddir 11281 axltadd 11363 pnpcan2 11576 subdir 11724 ltaddsub 11764 leaddsub 11766 mulcan2g 11944 div13 11970 ltdiv2 12181 lediv2 12185 zdiv 12713 xadddir 13358 xadddi2r 13360 fzen 13601 fzrevral2 13670 fzshftral 13672 ssfzoulel 13810 fzind2 13835 flflp1 13858 mulbinom2 14272 digit1 14286 faclbnd5 14347 ccatlcan 14766 elicc4abs 15368 dvdsnegb 16322 muldvds1 16329 muldvds2 16330 dvdscmul 16331 dvdsmulc 16332 dvdscmulr 16333 dvdsmulcr 16334 dvdsgcd 16591 mulgcdr 16597 lcmgcdeq 16659 congr 16711 mulgnnass 19149 gaass 19337 elfm3 23979 mettri 24383 cnmet 24813 addcnlem 24905 bcthlem5 25381 isppw2 27176 vmappw 27177 bcmono 27339 sletr 27821 sltadd1im 28036 colinearalg 28943 ax5seglem1 28961 ax5seglem2 28962 vcdir 30598 vcass 30599 imsmetlem 30722 hvaddcan2 31103 hvsubcan2 31107 dfgcd3 37290 isbasisrelowllem1 37321 ltflcei 37568 fzmul 37701 brcnvrabga 38298 pclfinclN 39907 rabrenfdioph 42770 uun123p2 44781 isosctrlem1ALT 44905 |
Copyright terms: Public domain | W3C validator |