| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3coml | Structured version Visualization version GIF version | ||
| Description: Commutation in antecedent. Rotate left. (Contributed by NM, 28-Jan-1996.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3coml | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3com23 1126 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
| 3 | 2 | 3com13 1124 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: spc3egv 3569 omwordri 8536 oeword 8554 f1oen2g 8940 f1dom2g 8941 f1imaenfi 9159 ordiso 9469 en3lplem2 9566 axdc3lem4 10406 ltasr 11053 adddir 11165 axltadd 11247 pnpcan2 11462 subdir 11612 ltaddsub 11652 leaddsub 11654 mulcan2g 11832 div13 11858 ltdiv2 12069 lediv2 12073 zdiv 12604 xadddir 13256 xadddi2r 13258 fzen 13502 fzrevral2 13574 fzshftral 13576 ssfzoulel 13721 fzind2 13746 flflp1 13769 mulbinom2 14188 digit1 14202 faclbnd5 14263 ccatlcan 14683 elicc4abs 15286 dvdsnegb 16243 muldvds1 16250 muldvds2 16251 dvdscmul 16252 dvdsmulc 16253 dvdscmulr 16254 dvdsmulcr 16255 dvdsgcd 16514 mulgcdr 16520 lcmgcdeq 16582 congr 16634 mulgnnass 19041 gaass 19229 elfm3 23837 mettri 24240 cnmet 24659 addcnlem 24753 bcthlem5 25228 isppw2 27025 vmappw 27026 bcmono 27188 sletr 27670 sltadd1im 27892 colinearalg 28837 ax5seglem1 28855 ax5seglem2 28856 vcdir 30495 vcass 30496 imsmetlem 30619 hvaddcan2 31000 hvsubcan2 31004 dfgcd3 37312 isbasisrelowllem1 37343 ltflcei 37602 fzmul 37735 brcnvrabga 38324 pclfinclN 39944 rabrenfdioph 42802 uun123p2 44799 isosctrlem1ALT 44923 |
| Copyright terms: Public domain | W3C validator |