Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3coml | Structured version Visualization version GIF version |
Description: Commutation in antecedent. Rotate left. (Contributed by NM, 28-Jan-1996.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3coml | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3com23 1124 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
3 | 2 | 3com13 1122 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: spc3egv 3532 omwordri 8365 oeword 8383 f1oen2g 8711 f1dom2g 8712 f1dom2gOLD 8713 f1imaenfi 8939 ordiso 9205 en3lplem2 9301 axdc3lem4 10140 ltasr 10787 adddir 10897 axltadd 10979 pnpcan2 11191 subdir 11339 ltaddsub 11379 leaddsub 11381 mulcan2g 11559 div13 11584 ltdiv2 11791 lediv2 11795 zdiv 12320 xadddir 12959 xadddi2r 12961 fzen 13202 fzrevral2 13271 fzshftral 13273 ssfzoulel 13409 fzind2 13433 flflp1 13455 mulbinom2 13866 digit1 13880 faclbnd5 13940 ccatlcan 14359 elicc4abs 14959 dvdsnegb 15911 muldvds1 15918 muldvds2 15919 dvdscmul 15920 dvdsmulc 15921 dvdscmulr 15922 dvdsmulcr 15923 dvdsgcd 16180 mulgcdr 16186 lcmgcdeq 16245 congr 16297 mulgnnass 18653 gaass 18818 elfm3 23009 mettri 23413 cnmet 23841 addcnlem 23933 bcthlem5 24397 isppw2 26169 vmappw 26170 bcmono 26330 colinearalg 27181 ax5seglem1 27199 ax5seglem2 27200 vcdir 28829 vcass 28830 imsmetlem 28953 hvaddcan2 29334 hvsubcan2 29338 sletr 33888 dfgcd3 35422 isbasisrelowllem1 35453 ltflcei 35692 fzmul 35826 brcnvrabga 36404 pclfinclN 37891 rabrenfdioph 40552 uun123p2 42319 isosctrlem1ALT 42443 |
Copyright terms: Public domain | W3C validator |