| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3coml | Structured version Visualization version GIF version | ||
| Description: Commutation in antecedent. Rotate left. (Contributed by NM, 28-Jan-1996.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3coml | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3com23 1126 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
| 3 | 2 | 3com13 1124 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: spc3egv 3572 omwordri 8539 oeword 8557 f1oen2g 8943 f1dom2g 8944 f1imaenfi 9165 ordiso 9476 en3lplem2 9573 axdc3lem4 10413 ltasr 11060 adddir 11172 axltadd 11254 pnpcan2 11469 subdir 11619 ltaddsub 11659 leaddsub 11661 mulcan2g 11839 div13 11865 ltdiv2 12076 lediv2 12080 zdiv 12611 xadddir 13263 xadddi2r 13265 fzen 13509 fzrevral2 13581 fzshftral 13583 ssfzoulel 13728 fzind2 13753 flflp1 13776 mulbinom2 14195 digit1 14209 faclbnd5 14270 ccatlcan 14690 elicc4abs 15293 dvdsnegb 16250 muldvds1 16257 muldvds2 16258 dvdscmul 16259 dvdsmulc 16260 dvdscmulr 16261 dvdsmulcr 16262 dvdsgcd 16521 mulgcdr 16527 lcmgcdeq 16589 congr 16641 mulgnnass 19048 gaass 19236 elfm3 23844 mettri 24247 cnmet 24666 addcnlem 24760 bcthlem5 25235 isppw2 27032 vmappw 27033 bcmono 27195 sletr 27677 sltadd1im 27899 colinearalg 28844 ax5seglem1 28862 ax5seglem2 28863 vcdir 30502 vcass 30503 imsmetlem 30626 hvaddcan2 31007 hvsubcan2 31011 dfgcd3 37319 isbasisrelowllem1 37350 ltflcei 37609 fzmul 37742 brcnvrabga 38331 pclfinclN 39951 rabrenfdioph 42809 uun123p2 44806 isosctrlem1ALT 44930 |
| Copyright terms: Public domain | W3C validator |