| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3coml | Structured version Visualization version GIF version | ||
| Description: Commutation in antecedent. Rotate left. (Contributed by NM, 28-Jan-1996.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3coml | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3com23 1126 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) |
| 3 | 2 | 3com13 1124 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: spc3egv 3560 omwordri 8497 oeword 8515 f1oen2g 8901 f1dom2g 8902 f1imaenfi 9119 ordiso 9427 en3lplem2 9528 axdc3lem4 10366 ltasr 11013 adddir 11125 axltadd 11207 pnpcan2 11422 subdir 11572 ltaddsub 11612 leaddsub 11614 mulcan2g 11792 div13 11818 ltdiv2 12029 lediv2 12033 zdiv 12564 xadddir 13216 xadddi2r 13218 fzen 13462 fzrevral2 13534 fzshftral 13536 ssfzoulel 13681 fzind2 13706 flflp1 13729 mulbinom2 14148 digit1 14162 faclbnd5 14223 ccatlcan 14642 elicc4abs 15245 dvdsnegb 16202 muldvds1 16209 muldvds2 16210 dvdscmul 16211 dvdsmulc 16212 dvdscmulr 16213 dvdsmulcr 16214 dvdsgcd 16473 mulgcdr 16479 lcmgcdeq 16541 congr 16593 mulgnnass 19006 gaass 19194 elfm3 23853 mettri 24256 cnmet 24675 addcnlem 24769 bcthlem5 25244 isppw2 27041 vmappw 27042 bcmono 27204 sletr 27686 sltadd1im 27915 colinearalg 28873 ax5seglem1 28891 ax5seglem2 28892 vcdir 30528 vcass 30529 imsmetlem 30652 hvaddcan2 31033 hvsubcan2 31037 dfgcd3 37297 isbasisrelowllem1 37328 ltflcei 37587 fzmul 37720 brcnvrabga 38309 pclfinclN 39929 rabrenfdioph 42787 uun123p2 44783 isosctrlem1ALT 44907 |
| Copyright terms: Public domain | W3C validator |