Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > uun2131p1 | Structured version Visualization version GIF version |
Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
uun2131p1.1 | ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜑 ∧ 𝜓)) → 𝜃) |
Ref | Expression |
---|---|
uun2131p1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 460 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜑 ∧ 𝜓))) | |
2 | uun2131p1.1 | . . 3 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜑 ∧ 𝜓)) → 𝜃) | |
3 | 1, 2 | sylbi 216 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜃) |
4 | 3 | 3impdi 1348 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |