![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3impdi | Structured version Visualization version GIF version |
Description: Importation inference (undistribute conjunction). (Contributed by NM, 14-Aug-1995.) |
Ref | Expression |
---|---|
3impdi.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
3impdi | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3impdi.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜃) | |
2 | 1 | anandis 675 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
3 | 2 | 3impb 1112 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1086 |
This theorem is referenced by: oacan 8543 omcan 8564 ecovdi 8815 distrpi 10889 axltadd 11284 ccatlcan 14665 absmulgcd 16488 axlowdimlem14 28682 fh1 31340 fh2 31341 cm2j 31342 hoadddi 31525 hosubdi 31530 leopmul2i 31857 dvconstbi 43582 eel2131 43964 uun2131 44041 uun2131p1 44042 io1ii 47741 reccot 47991 rectan 47992 |
Copyright terms: Public domain | W3C validator |