MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3impdi Structured version   Visualization version   GIF version

Theorem 3impdi 1348
Description: Importation inference (undistribute conjunction). (Contributed by NM, 14-Aug-1995.)
Hypothesis
Ref Expression
3impdi.1 (((𝜑𝜓) ∧ (𝜑𝜒)) → 𝜃)
Assertion
Ref Expression
3impdi ((𝜑𝜓𝜒) → 𝜃)

Proof of Theorem 3impdi
StepHypRef Expression
1 3impdi.1 . . 3 (((𝜑𝜓) ∧ (𝜑𝜒)) → 𝜃)
21anandis 674 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
323impb 1113 1 ((𝜑𝜓𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  oacan  8341  omcan  8362  ecovdi  8572  distrpi  10585  axltadd  10979  ccatlcan  14359  absmulgcd  16185  axlowdimlem14  27226  fh1  29881  fh2  29882  cm2j  29883  hoadddi  30066  hosubdi  30071  leopmul2i  30398  dvconstbi  41841  eel2131  42223  uun2131  42300  uun2131p1  42301  io1ii  46102  reccot  46346  rectan  46347
  Copyright terms: Public domain W3C validator