MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3impdi Structured version   Visualization version   GIF version

Theorem 3impdi 1351
Description: Importation inference (undistribute conjunction). (Contributed by NM, 14-Aug-1995.)
Hypothesis
Ref Expression
3impdi.1 (((𝜑𝜓) ∧ (𝜑𝜒)) → 𝜃)
Assertion
Ref Expression
3impdi ((𝜑𝜓𝜒) → 𝜃)

Proof of Theorem 3impdi
StepHypRef Expression
1 3impdi.1 . . 3 (((𝜑𝜓) ∧ (𝜑𝜒)) → 𝜃)
21anandis 678 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
323impb 1114 1 ((𝜑𝜓𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  oacan  8560  omcan  8581  ecovdi  8839  distrpi  10912  axltadd  11308  ccatlcan  14736  absmulgcd  16568  axlowdimlem14  28934  fh1  31599  fh2  31600  cm2j  31601  hoadddi  31784  hosubdi  31789  leopmul2i  32116  dvconstbi  44358  eel2131  44738  uun2131  44815  uun2131p1  44816  io1ii  48895  reccot  49622  rectan  49623
  Copyright terms: Public domain W3C validator