MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3impdi Structured version   Visualization version   GIF version

Theorem 3impdi 1350
Description: Importation inference (undistribute conjunction). (Contributed by NM, 14-Aug-1995.)
Hypothesis
Ref Expression
3impdi.1 (((𝜑𝜓) ∧ (𝜑𝜒)) → 𝜃)
Assertion
Ref Expression
3impdi ((𝜑𝜓𝜒) → 𝜃)

Proof of Theorem 3impdi
StepHypRef Expression
1 3impdi.1 . . 3 (((𝜑𝜓) ∧ (𝜑𝜒)) → 𝜃)
21anandis 677 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
323impb 1115 1 ((𝜑𝜓𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  oacan  8604  omcan  8625  ecovdi  8883  distrpi  10967  axltadd  11363  ccatlcan  14766  absmulgcd  16596  axlowdimlem14  28988  fh1  31650  fh2  31651  cm2j  31652  hoadddi  31835  hosubdi  31840  leopmul2i  32167  dvconstbi  44303  eel2131  44685  uun2131  44762  uun2131p1  44763  io1ii  48600  reccot  48850  rectan  48851
  Copyright terms: Public domain W3C validator