| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3impdi | Structured version Visualization version GIF version | ||
| Description: Importation inference (undistribute conjunction). (Contributed by NM, 14-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3impdi.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| 3impdi | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impdi.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜃) | |
| 2 | 1 | anandis 678 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| 3 | 2 | 3impb 1114 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: oacan 8473 omcan 8494 ecovdi 8759 distrpi 10811 axltadd 11208 ccatlcan 14643 absmulgcd 16479 axlowdimlem14 28919 fh1 31581 fh2 31582 cm2j 31583 hoadddi 31766 hosubdi 31771 leopmul2i 32098 dvconstbi 44327 eel2131 44707 uun2131 44784 uun2131p1 44785 io1ii 48925 reccot 49763 rectan 49764 |
| Copyright terms: Public domain | W3C validator |