![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3impdi | Structured version Visualization version GIF version |
Description: Importation inference (undistribute conjunction). (Contributed by NM, 14-Aug-1995.) |
Ref | Expression |
---|---|
3impdi.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
3impdi | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3impdi.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜃) | |
2 | 1 | anandis 677 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
3 | 2 | 3impb 1115 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: oacan 8604 omcan 8625 ecovdi 8883 distrpi 10967 axltadd 11363 ccatlcan 14766 absmulgcd 16596 axlowdimlem14 28988 fh1 31650 fh2 31651 cm2j 31652 hoadddi 31835 hosubdi 31840 leopmul2i 32167 dvconstbi 44303 eel2131 44685 uun2131 44762 uun2131p1 44763 io1ii 48600 reccot 48850 rectan 48851 |
Copyright terms: Public domain | W3C validator |