MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3impdi Structured version   Visualization version   GIF version

Theorem 3impdi 1351
Description: Importation inference (undistribute conjunction). (Contributed by NM, 14-Aug-1995.)
Hypothesis
Ref Expression
3impdi.1 (((𝜑𝜓) ∧ (𝜑𝜒)) → 𝜃)
Assertion
Ref Expression
3impdi ((𝜑𝜓𝜒) → 𝜃)

Proof of Theorem 3impdi
StepHypRef Expression
1 3impdi.1 . . 3 (((𝜑𝜓) ∧ (𝜑𝜒)) → 𝜃)
21anandis 678 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
323impb 1114 1 ((𝜑𝜓𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  oacan  8512  omcan  8533  ecovdi  8798  distrpi  10851  axltadd  11247  ccatlcan  14683  absmulgcd  16519  axlowdimlem14  28882  fh1  31547  fh2  31548  cm2j  31549  hoadddi  31732  hosubdi  31737  leopmul2i  32064  dvconstbi  44323  eel2131  44703  uun2131  44780  uun2131p1  44781  io1ii  48909  reccot  49747  rectan  49748
  Copyright terms: Public domain W3C validator