MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3impdi Structured version   Visualization version   GIF version

Theorem 3impdi 1351
Description: Importation inference (undistribute conjunction). (Contributed by NM, 14-Aug-1995.)
Hypothesis
Ref Expression
3impdi.1 (((𝜑𝜓) ∧ (𝜑𝜒)) → 𝜃)
Assertion
Ref Expression
3impdi ((𝜑𝜓𝜒) → 𝜃)

Proof of Theorem 3impdi
StepHypRef Expression
1 3impdi.1 . . 3 (((𝜑𝜓) ∧ (𝜑𝜒)) → 𝜃)
21anandis 678 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
323impb 1114 1 ((𝜑𝜓𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  oacan  8458  omcan  8479  ecovdi  8744  distrpi  10784  axltadd  11181  ccatlcan  14620  absmulgcd  16455  axlowdimlem14  28928  fh1  31590  fh2  31591  cm2j  31592  hoadddi  31775  hosubdi  31780  leopmul2i  32107  dvconstbi  44367  eel2131  44746  uun2131  44823  uun2131p1  44824  io1ii  48952  reccot  49790  rectan  49791
  Copyright terms: Public domain W3C validator