| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3impdi | Structured version Visualization version GIF version | ||
| Description: Importation inference (undistribute conjunction). (Contributed by NM, 14-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3impdi.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| 3impdi | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impdi.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜃) | |
| 2 | 1 | anandis 678 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| 3 | 2 | 3impb 1114 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: oacan 8515 omcan 8536 ecovdi 8801 distrpi 10858 axltadd 11254 ccatlcan 14690 absmulgcd 16526 axlowdimlem14 28889 fh1 31554 fh2 31555 cm2j 31556 hoadddi 31739 hosubdi 31744 leopmul2i 32071 dvconstbi 44330 eel2131 44710 uun2131 44787 uun2131p1 44788 io1ii 48913 reccot 49751 rectan 49752 |
| Copyright terms: Public domain | W3C validator |