| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3impdi | Structured version Visualization version GIF version | ||
| Description: Importation inference (undistribute conjunction). (Contributed by NM, 14-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3impdi.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| 3impdi | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impdi.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜃) | |
| 2 | 1 | anandis 678 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| 3 | 2 | 3impb 1114 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: oacan 8560 omcan 8581 ecovdi 8839 distrpi 10912 axltadd 11308 ccatlcan 14736 absmulgcd 16568 axlowdimlem14 28934 fh1 31599 fh2 31600 cm2j 31601 hoadddi 31784 hosubdi 31789 leopmul2i 32116 dvconstbi 44358 eel2131 44738 uun2131 44815 uun2131p1 44816 io1ii 48895 reccot 49622 rectan 49623 |
| Copyright terms: Public domain | W3C validator |