Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3impdi | Structured version Visualization version GIF version |
Description: Importation inference (undistribute conjunction). (Contributed by NM, 14-Aug-1995.) |
Ref | Expression |
---|---|
3impdi.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
3impdi | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3impdi.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜃) | |
2 | 1 | anandis 674 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
3 | 2 | 3impb 1113 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: oacan 8341 omcan 8362 ecovdi 8572 distrpi 10585 axltadd 10979 ccatlcan 14359 absmulgcd 16185 axlowdimlem14 27226 fh1 29881 fh2 29882 cm2j 29883 hoadddi 30066 hosubdi 30071 leopmul2i 30398 dvconstbi 41841 eel2131 42223 uun2131 42300 uun2131p1 42301 io1ii 46102 reccot 46346 rectan 46347 |
Copyright terms: Public domain | W3C validator |