MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3impdi Structured version   Visualization version   GIF version

Theorem 3impdi 1347
Description: Importation inference (undistribute conjunction). (Contributed by NM, 14-Aug-1995.)
Hypothesis
Ref Expression
3impdi.1 (((𝜑𝜓) ∧ (𝜑𝜒)) → 𝜃)
Assertion
Ref Expression
3impdi ((𝜑𝜓𝜒) → 𝜃)

Proof of Theorem 3impdi
StepHypRef Expression
1 3impdi.1 . . 3 (((𝜑𝜓) ∧ (𝜑𝜒)) → 𝜃)
21anandis 677 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
323impb 1112 1 ((𝜑𝜓𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1086
This theorem is referenced by:  oacan  8184  omcan  8205  ecovdi  8415  distrpi  10358  axltadd  10752  ccatlcan  14127  absmulgcd  15948  axlowdimlem14  26848  fh1  29500  fh2  29501  cm2j  29502  hoadddi  29685  hosubdi  29690  leopmul2i  30017  dvconstbi  41411  eel2131  41793  uun2131  41870  uun2131p1  41871  reccot  45675  rectan  45676
  Copyright terms: Public domain W3C validator