| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3impdi | Structured version Visualization version GIF version | ||
| Description: Importation inference (undistribute conjunction). (Contributed by NM, 14-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3impdi.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| 3impdi | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impdi.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜃) | |
| 2 | 1 | anandis 678 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| 3 | 2 | 3impb 1114 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: oacan 8458 omcan 8479 ecovdi 8744 distrpi 10784 axltadd 11181 ccatlcan 14620 absmulgcd 16455 axlowdimlem14 28928 fh1 31590 fh2 31591 cm2j 31592 hoadddi 31775 hosubdi 31780 leopmul2i 32107 dvconstbi 44367 eel2131 44746 uun2131 44823 uun2131p1 44824 io1ii 48952 reccot 49790 rectan 49791 |
| Copyright terms: Public domain | W3C validator |