Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-impchain-com-1.3 Structured version   Visualization version   GIF version

Theorem wl-impchain-com-1.3 35531
Description: This theorem is in fact a copy of com13 88, and repeated here to demonstrate a simple proof scheme. The number '3' in the theorem name indicates that a chain of length 3 is modified.

See wl-impchain-com-1.x 35528 for more information how this proof is generated. (Contributed by Wolf Lammen, 7-Jul-2019.) (New usage is discouraged.) (Proof modification is discouraged.)

Hypothesis
Ref Expression
wl-impchain-com-1.3.h1 (𝜃 → (𝜒 → (𝜓𝜑)))
Assertion
Ref Expression
wl-impchain-com-1.3 (𝜓 → (𝜒 → (𝜃𝜑)))

Proof of Theorem wl-impchain-com-1.3
StepHypRef Expression
1 wl-impchain-com-1.3.h1 . . . 4 (𝜃 → (𝜒 → (𝜓𝜑)))
21wl-impchain-com-1.2 35530 . . 3 (𝜒 → (𝜃 → (𝜓𝜑)))
3 wl-luk-pm2.04 35522 . . 3 ((𝜃 → (𝜓𝜑)) → (𝜓 → (𝜃𝜑)))
42, 3wl-impchain-mp-1 35526 . 2 (𝜒 → (𝜓 → (𝜃𝜑)))
54wl-impchain-com-1.2 35530 1 (𝜓 → (𝜒 → (𝜃𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-luk1 35496  ax-luk2 35497  ax-luk3 35498
This theorem is referenced by:  wl-impchain-com-1.4  35532  wl-impchain-com-2.3  35534
  Copyright terms: Public domain W3C validator