Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-luk-pm2.04 Structured version   Visualization version   GIF version

Theorem wl-luk-pm2.04 36816
Description: Swap antecedents. Theorem *2.04 of [WhiteheadRussell] p. 100. This was the third axiom in Frege's logic system, specifically Proposition 8 of [Frege1879] p. 35. Copy of pm2.04 90 with a different proof. (Contributed by Wolf Lammen, 7-Jul-2019.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
wl-luk-pm2.04 ((𝜑 → (𝜓𝜒)) → (𝜓 → (𝜑𝜒)))

Proof of Theorem wl-luk-pm2.04
StepHypRef Expression
1 wl-luk-ax1 36805 . 2 (𝜓 → (𝜑𝜓))
2 wl-luk-ax2 36813 . 2 ((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒)))
31, 2wl-luk-imtrid 36796 1 ((𝜑 → (𝜓𝜒)) → (𝜓 → (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-luk1 36790  ax-luk2 36791  ax-luk3 36792
This theorem is referenced by:  wl-impchain-com-1.2  36824  wl-impchain-com-1.3  36825  wl-impchain-com-1.4  36826
  Copyright terms: Public domain W3C validator