Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-luk-ax3 Structured version   Visualization version   GIF version

Theorem wl-luk-ax3 35227
Description: ax-3 8 proved from Lukasiewicz's axioms. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
wl-luk-ax3 ((¬ 𝜑 → ¬ 𝜓) → (𝜓𝜑))

Proof of Theorem wl-luk-ax3
StepHypRef Expression
1 ax-luk3 35215 . . 3 (𝜓 → (¬ 𝜓𝜑))
2 ax-luk1 35213 . . 3 ((¬ 𝜑 → ¬ 𝜓) → ((¬ 𝜓𝜑) → (¬ 𝜑𝜑)))
31, 2wl-luk-imtrid 35219 . 2 ((¬ 𝜑 → ¬ 𝜓) → (𝜓 → (¬ 𝜑𝜑)))
4 ax-luk2 35214 . 2 ((¬ 𝜑𝜑) → 𝜑)
53, 4wl-luk-imtrdi 35226 1 ((¬ 𝜑 → ¬ 𝜓) → (𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-luk1 35213  ax-luk2 35214  ax-luk3 35215
This theorem is referenced by:  wl-luk-ax1  35228
  Copyright terms: Public domain W3C validator