Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-luk-imtrdi Structured version   Visualization version   GIF version

Theorem wl-luk-imtrdi 35367
Description: A syllogism rule of inference. The second premise is used to replace the consequent of the first premise. Copy of syl6 35 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
wl-luk-imtrdi.1 (𝜑 → (𝜓𝜒))
wl-luk-imtrdi.2 (𝜒𝜃)
Assertion
Ref Expression
wl-luk-imtrdi (𝜑 → (𝜓𝜃))

Proof of Theorem wl-luk-imtrdi
StepHypRef Expression
1 wl-luk-imtrdi.1 . 2 (𝜑 → (𝜓𝜒))
2 wl-luk-imtrdi.2 . . 3 (𝜒𝜃)
32wl-luk-imim2i 35366 . 2 ((𝜓𝜒) → (𝜓𝜃))
41, 3wl-luk-syl 35359 1 (𝜑 → (𝜓𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-luk1 35354  ax-luk2 35355  ax-luk3 35356
This theorem is referenced by:  wl-luk-ax3  35368  wl-luk-pm2.27  35370
  Copyright terms: Public domain W3C validator