Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-luk-ax1 Structured version   Visualization version   GIF version

Theorem wl-luk-ax1 35116
Description: ax-1 6 proved from Lukasiewicz's axioms. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
wl-luk-ax1 (𝜑 → (𝜓𝜑))

Proof of Theorem wl-luk-ax1
StepHypRef Expression
1 ax-luk3 35103 . 2 (𝜑 → (¬ 𝜑 → ¬ 𝜓))
2 wl-luk-ax3 35115 . 2 ((¬ 𝜑 → ¬ 𝜓) → (𝜓𝜑))
31, 2wl-luk-syl 35106 1 (𝜑 → (𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-luk1 35101  ax-luk2 35102  ax-luk3 35103
This theorem is referenced by:  wl-luk-pm2.27  35117  wl-luk-a1d  35123  wl-luk-pm2.04  35127
  Copyright terms: Public domain W3C validator