Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-luk-id Structured version   Visualization version   GIF version

Theorem wl-luk-id 35520
Description: Principle of identity. Theorem *2.08 of [WhiteheadRussell] p. 101. Copy of id 22 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
wl-luk-id (𝜑𝜑)

Proof of Theorem wl-luk-id
StepHypRef Expression
1 ax-luk3 35498 . 2 (𝜑 → (¬ 𝜑𝜑))
2 ax-luk2 35497 . 2 ((¬ 𝜑𝜑) → 𝜑)
31, 2wl-luk-syl 35501 1 (𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-luk1 35496  ax-luk2 35497  ax-luk3 35498
This theorem is referenced by:  wl-luk-notnotr  35521
  Copyright terms: Public domain W3C validator