Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-luk-notnotr Structured version   Visualization version   GIF version

Theorem wl-luk-notnotr 35126
Description: Converse of double negation. Theorem *2.14 of [WhiteheadRussell] p. 102. In classical logic (our logic) this is always true. In intuitionistic logic this is not always true; in intuitionistic logic, when this is true for some 𝜑, then 𝜑 is stable. Copy of notnotr 132 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
wl-luk-notnotr (¬ ¬ 𝜑𝜑)

Proof of Theorem wl-luk-notnotr
StepHypRef Expression
1 wl-luk-id 35125 . 2 𝜑 → ¬ 𝜑)
21wl-luk-con1i 35120 1 (¬ ¬ 𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-luk1 35101  ax-luk2 35102  ax-luk3 35103
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator