Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-luk-ax2 Structured version   Visualization version   GIF version

Theorem wl-luk-ax2 35124
Description: ax-2 7 proved from Lukasiewicz's axioms. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
wl-luk-ax2 ((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒)))

Proof of Theorem wl-luk-ax2
StepHypRef Expression
1 wl-luk-pm2.21 35119 . . 3 𝜑 → (𝜑𝜒))
21wl-luk-a1d 35123 . 2 𝜑 → ((𝜑𝜓) → (𝜑𝜒)))
3 wl-luk-imim2 35122 . 2 ((𝜓𝜒) → ((𝜑𝜓) → (𝜑𝜒)))
42, 3wl-luk-ja 35121 1 ((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-luk1 35101  ax-luk2 35102  ax-luk3 35103
This theorem is referenced by:  wl-luk-pm2.04  35127
  Copyright terms: Public domain W3C validator