| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-luk-syl | Structured version Visualization version GIF version | ||
| Description: An inference version of the transitive laws for implication luk-1 1654. Copy of syl 17 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| wl-luk-syl.1 | ⊢ (𝜑 → 𝜓) |
| wl-luk-syl.2 | ⊢ (𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| wl-luk-syl | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wl-luk-syl.2 | . 2 ⊢ (𝜓 → 𝜒) | |
| 2 | wl-luk-syl.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 2 | wl-luk-imim1i 37358 | . 2 ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜒)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-luk1 37354 |
| This theorem is referenced by: wl-luk-imtrid 37360 wl-luk-pm2.18d 37361 wl-luk-imtrdi 37367 wl-luk-ax1 37369 wl-luk-pm2.27 37370 wl-luk-a1d 37376 wl-luk-id 37378 |
| Copyright terms: Public domain | W3C validator |