Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-luk-imim1i | Structured version Visualization version GIF version |
Description: Inference adding common consequents in an implication, thereby interchanging the original antecedent and consequent. Copy of imim1i 63 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) |
Ref | Expression |
---|---|
wl-luk-imim1i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
wl-luk-imim1i | ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wl-luk-imim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | ax-luk1 35517 | . 2 ⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜒) → (𝜑 → 𝜒))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-luk1 35517 |
This theorem is referenced by: wl-luk-syl 35522 wl-luk-imtrid 35523 |
Copyright terms: Public domain | W3C validator |