![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imim1i | Structured version Visualization version GIF version |
Description: Inference adding common consequents in an implication, thereby interchanging the original antecedent and consequent. Inference associated with imim1 83. Its associated inference is syl 17. (Contributed by NM, 28-Dec-1992.) (Proof shortened by Wolf Lammen, 4-Aug-2012.) |
Ref | Expression |
---|---|
imim1i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
imim1i | ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | id 22 | . 2 ⊢ (𝜒 → 𝜒) | |
3 | 1, 2 | imim12i 62 | 1 ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: jarr 106 jarl 125 impt 178 pm3.41 494 pm3.42 495 pm2.67-2 891 jaob 961 3jaob 1427 merco1 1716 19.21v 1943 19.39 1989 moimi 2540 r19.30OLD 3122 r19.37 3260 axrep2 5289 dmcosseq 5973 fliftfun 7309 tz7.48lem 8441 ssfi 9173 ac6sfi 9287 frfi 9288 domunfican 9320 iunfi 9340 finsschain 9359 cantnfval2 9664 cantnflt 9667 cnfcom 9695 kmlem1 10145 kmlem13 10157 axpowndlem2 10593 wunfi 10716 ingru 10810 xrub 13291 hashf1lem2 14417 caubnd 15305 fsum2d 15717 fsumabs 15747 fsumrlim 15757 fsumo1 15758 fsumiun 15767 fprod2d 15925 ablfac1eulem 19942 mplcoe1 21592 mplcoe5 21595 mdetunilem9 22122 t1t0 22852 fiuncmp 22908 ptcmpfi 23317 isfil2 23360 fsumcn 24386 ovolfiniun 25018 finiunmbl 25061 volfiniun 25064 itgfsum 25344 dvmptfsum 25492 pntrsumbnd 27069 mulsproplem12 27586 mulsproplem13 27587 mulsproplem14 27588 nmounbseqi 30061 nmounbseqiALT 30062 isch3 30525 dmdmd 31584 mdslmd1lem2 31610 sumdmdi 31704 dmdbr4ati 31705 dmdbr6ati 31707 gsumle 32273 gsumvsca1 32402 gsumvsca2 32403 pwsiga 33159 bnj1533 33894 bnj110 33900 bnj1523 34113 dfon2lem8 34793 meran1 35344 bj-stabpeirce 35478 bj-bi3ant 35515 bj-ssbid2ALT 35588 bj-spnfw 35595 bj-spst 35615 bj-19.23bit 35617 wl-syls2 36426 heibor1lem 36725 isltrn2N 39039 cdlemefrs32fva 39319 fiinfi 42372 con3ALT2 43339 alrim3con13v 43342 islinindfis 47178 setrec1lem4 47783 |
Copyright terms: Public domain | W3C validator |