| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imim1i | Structured version Visualization version GIF version | ||
| Description: Inference adding common consequents in an implication, thereby interchanging the original antecedent and consequent. Inference associated with imim1 83. Its associated inference is syl 17. (Contributed by NM, 28-Dec-1992.) (Proof shortened by Wolf Lammen, 4-Aug-2012.) |
| Ref | Expression |
|---|---|
| imim1i.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| imim1i | ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | id 22 | . 2 ⊢ (𝜒 → 𝜒) | |
| 3 | 1, 2 | imim12i 62 | 1 ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: jarr 106 jarl 125 impt 178 pm3.41 492 pm3.42 493 pm2.67-2 891 jaob 963 3jaobOLD 1429 merco1 1713 19.21v 1939 19.39 1990 moimi 2538 r19.37 3238 axrep2 5232 axprlem4 5376 dmcosseq 5929 dmcosseqOLD 5930 fliftfun 7269 tz7.48lem 8386 ssfi 9114 ac6sfi 9207 frfi 9208 domunfican 9248 iunfi 9270 finsschain 9286 cantnfval2 9598 cantnflt 9601 cnfcom 9629 kmlem1 10080 kmlem13 10092 axpowndlem2 10527 wunfi 10650 ingru 10744 xrub 13248 hashf1lem2 14397 caubnd 15301 fsum2d 15713 fsumabs 15743 fsumrlim 15753 fsumo1 15754 fsumiun 15763 fprod2d 15923 ablfac1eulem 19980 mplcoe1 21920 mplcoe5 21923 mdetunilem9 22483 t1t0 23211 fiuncmp 23267 ptcmpfi 23676 isfil2 23719 fsumcn 24737 ovolfiniun 25378 finiunmbl 25421 volfiniun 25424 itgfsum 25704 dvmptfsum 25855 pntrsumbnd 27453 mulsproplem12 28006 mulsproplem13 28007 mulsproplem14 28008 nmounbseqi 30679 nmounbseqiALT 30680 isch3 31143 dmdmd 32202 mdslmd1lem2 32228 sumdmdi 32322 dmdbr4ati 32323 dmdbr6ati 32325 gsumle 33011 gsumvsca1 33152 gsumvsca2 33153 pwsiga 34093 bnj1533 34815 bnj110 34821 bnj1523 35034 dfon2lem8 35751 meran1 36372 bj-stabpeirce 36515 bj-bi3ant 36550 bj-ssbid2ALT 36624 bj-spnfw 36631 bj-spst 36650 bj-19.23bit 36652 wl-syls2 37470 heibor1lem 37776 isltrn2N 40087 cdlemefrs32fva 40367 fiinfi 43535 con3ALT2 44493 alrim3con13v 44496 islinindfis 48411 setrec1lem4 49652 |
| Copyright terms: Public domain | W3C validator |