![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imim1i | Structured version Visualization version GIF version |
Description: Inference adding common consequents in an implication, thereby interchanging the original antecedent and consequent. Inference associated with imim1 83. Its associated inference is syl 17. (Contributed by NM, 28-Dec-1992.) (Proof shortened by Wolf Lammen, 4-Aug-2012.) |
Ref | Expression |
---|---|
imim1i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
imim1i | ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | id 22 | . 2 ⊢ (𝜒 → 𝜒) | |
3 | 1, 2 | imim12i 62 | 1 ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: jarr 106 jarl 123 impt 171 pm3.41 485 pm3.42 486 pm2.67-2 875 jaob 944 3jaob 1406 merco1 1676 19.21v 1898 19.39 1941 moimi 2550 r19.30 3273 r19.37 3278 axrep2 5046 dmcosseq 5679 fliftfun 6882 tz7.48lem 7873 ac6sfi 8549 frfi 8550 domunfican 8578 iunfi 8599 finsschain 8618 cantnfval2 8918 cantnflt 8921 cnfcom 8949 kmlem1 9362 kmlem13 9374 axpowndlem2 9810 wunfi 9933 ingru 10027 xrub 12514 hashf1lem2 13617 caubnd 14569 fsum2d 14976 fsumabs 15006 fsumrlim 15016 fsumo1 15017 fsumiun 15026 fprod2d 15185 ablfac1eulem 18934 mplcoe1 19949 mplcoe5 19952 mdetunilem9 20923 t1t0 21650 fiuncmp 21706 ptcmpfi 22115 isfil2 22158 fsumcn 23171 ovolfiniun 23795 finiunmbl 23838 volfiniun 23841 itgfsum 24120 dvmptfsum 24265 pntrsumbnd 25834 nmounbseqi 28321 nmounbseqiALT 28322 isch3 28787 dmdmd 29848 mdslmd1lem2 29874 sumdmdi 29968 dmdbr4ati 29969 dmdbr6ati 29971 gsumle 30478 gsumvsca1 30481 gsumvsca2 30482 pwsiga 30991 bnj1533 31732 bnj110 31738 bnj1523 31949 dfon2lem8 32495 meran1 33219 bj-bi3ant 33378 bj-ssbid2ALT 33443 bj-spnfw 33452 bj-spst 33472 bj-19.23bit 33474 bj-axrep2 33559 wl-syls2 34125 heibor1lem 34477 isltrn2N 36649 cdlemefrs32fva 36929 fiinfi 39239 con3ALT2 40227 alrim3con13v 40230 islinindfis 43811 setrec1lem4 44100 |
Copyright terms: Public domain | W3C validator |