| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imim1i | Structured version Visualization version GIF version | ||
| Description: Inference adding common consequents in an implication, thereby interchanging the original antecedent and consequent. Inference associated with imim1 83. Its associated inference is syl 17. (Contributed by NM, 28-Dec-1992.) (Proof shortened by Wolf Lammen, 4-Aug-2012.) |
| Ref | Expression |
|---|---|
| imim1i.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| imim1i | ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | id 22 | . 2 ⊢ (𝜒 → 𝜒) | |
| 3 | 1, 2 | imim12i 62 | 1 ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: jarr 106 jarl 125 impt 178 pm3.41 492 pm3.42 493 pm2.67-2 891 jaob 963 3jaobOLD 1429 merco1 1713 19.21v 1939 19.39 1990 moimi 2538 r19.37 3240 axrep2 5237 axprlem4 5381 dmcosseq 5940 dmcosseqOLD 5941 fliftfun 7287 tz7.48lem 8409 ssfi 9137 ac6sfi 9231 frfi 9232 domunfican 9272 iunfi 9294 finsschain 9310 cantnfval2 9622 cantnflt 9625 cnfcom 9653 kmlem1 10104 kmlem13 10116 axpowndlem2 10551 wunfi 10674 ingru 10768 xrub 13272 hashf1lem2 14421 caubnd 15325 fsum2d 15737 fsumabs 15767 fsumrlim 15777 fsumo1 15778 fsumiun 15787 fprod2d 15947 ablfac1eulem 20004 mplcoe1 21944 mplcoe5 21947 mdetunilem9 22507 t1t0 23235 fiuncmp 23291 ptcmpfi 23700 isfil2 23743 fsumcn 24761 ovolfiniun 25402 finiunmbl 25445 volfiniun 25448 itgfsum 25728 dvmptfsum 25879 pntrsumbnd 27477 mulsproplem12 28030 mulsproplem13 28031 mulsproplem14 28032 nmounbseqi 30706 nmounbseqiALT 30707 isch3 31170 dmdmd 32229 mdslmd1lem2 32255 sumdmdi 32349 dmdbr4ati 32350 dmdbr6ati 32352 gsumle 33038 gsumvsca1 33179 gsumvsca2 33180 pwsiga 34120 bnj1533 34842 bnj110 34848 bnj1523 35061 dfon2lem8 35778 meran1 36399 bj-stabpeirce 36542 bj-bi3ant 36577 bj-ssbid2ALT 36651 bj-spnfw 36658 bj-spst 36677 bj-19.23bit 36679 wl-syls2 37497 heibor1lem 37803 isltrn2N 40114 cdlemefrs32fva 40394 fiinfi 43562 con3ALT2 44520 alrim3con13v 44523 islinindfis 48435 setrec1lem4 49676 |
| Copyright terms: Public domain | W3C validator |