| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imim1i | Structured version Visualization version GIF version | ||
| Description: Inference adding common consequents in an implication, thereby interchanging the original antecedent and consequent. Inference associated with imim1 83. Its associated inference is syl 17. (Contributed by NM, 28-Dec-1992.) (Proof shortened by Wolf Lammen, 4-Aug-2012.) |
| Ref | Expression |
|---|---|
| imim1i.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| imim1i | ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | id 22 | . 2 ⊢ (𝜒 → 𝜒) | |
| 3 | 1, 2 | imim12i 62 | 1 ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: jarr 106 jarl 125 impt 178 pm3.41 492 pm3.42 493 pm2.67-2 891 jaob 963 3jaobOLD 1429 merco1 1713 19.21v 1939 19.39 1990 moimi 2545 r19.37 3249 axrep2 5257 axprlem4 5401 dmcosseq 5961 dmcosseqOLD 5962 fliftfun 7310 tz7.48lem 8460 ssfi 9192 ac6sfi 9297 frfi 9298 domunfican 9338 iunfi 9360 finsschain 9376 cantnfval2 9688 cantnflt 9691 cnfcom 9719 kmlem1 10170 kmlem13 10182 axpowndlem2 10617 wunfi 10740 ingru 10834 xrub 13333 hashf1lem2 14479 caubnd 15382 fsum2d 15792 fsumabs 15822 fsumrlim 15832 fsumo1 15833 fsumiun 15842 fprod2d 16002 ablfac1eulem 20060 mplcoe1 22000 mplcoe5 22003 mdetunilem9 22563 t1t0 23291 fiuncmp 23347 ptcmpfi 23756 isfil2 23799 fsumcn 24817 ovolfiniun 25459 finiunmbl 25502 volfiniun 25505 itgfsum 25785 dvmptfsum 25936 pntrsumbnd 27534 mulsproplem12 28087 mulsproplem13 28088 mulsproplem14 28089 nmounbseqi 30763 nmounbseqiALT 30764 isch3 31227 dmdmd 32286 mdslmd1lem2 32312 sumdmdi 32406 dmdbr4ati 32407 dmdbr6ati 32409 gsumle 33097 gsumvsca1 33228 gsumvsca2 33229 pwsiga 34166 bnj1533 34888 bnj110 34894 bnj1523 35107 dfon2lem8 35813 meran1 36434 bj-stabpeirce 36577 bj-bi3ant 36612 bj-ssbid2ALT 36686 bj-spnfw 36693 bj-spst 36712 bj-19.23bit 36714 wl-syls2 37532 heibor1lem 37838 isltrn2N 40144 cdlemefrs32fva 40424 fiinfi 43564 con3ALT2 44522 alrim3con13v 44525 islinindfis 48392 setrec1lem4 49521 |
| Copyright terms: Public domain | W3C validator |