![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imim1i | Structured version Visualization version GIF version |
Description: Inference adding common consequents in an implication, thereby interchanging the original antecedent and consequent. Inference associated with imim1 83. Its associated inference is syl 17. (Contributed by NM, 28-Dec-1992.) (Proof shortened by Wolf Lammen, 4-Aug-2012.) |
Ref | Expression |
---|---|
imim1i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
imim1i | ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | id 22 | . 2 ⊢ (𝜒 → 𝜒) | |
3 | 1, 2 | imim12i 62 | 1 ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: jarr 106 jarl 125 impt 178 pm3.41 492 pm3.42 493 pm2.67-2 890 jaob 962 3jaobOLD 1427 merco1 1711 19.21v 1938 19.39 1984 moimi 2548 r19.30OLD 3127 r19.37 3268 axrep2 5306 dmcosseq 5999 dmcosseqOLD 6000 fliftfun 7348 tz7.48lem 8497 ssfi 9240 ac6sfi 9348 frfi 9349 domunfican 9389 iunfi 9411 finsschain 9429 cantnfval2 9738 cantnflt 9741 cnfcom 9769 kmlem1 10220 kmlem13 10232 axpowndlem2 10667 wunfi 10790 ingru 10884 xrub 13374 hashf1lem2 14505 caubnd 15407 fsum2d 15819 fsumabs 15849 fsumrlim 15859 fsumo1 15860 fsumiun 15869 fprod2d 16029 ablfac1eulem 20116 mplcoe1 22078 mplcoe5 22081 mdetunilem9 22647 t1t0 23377 fiuncmp 23433 ptcmpfi 23842 isfil2 23885 fsumcn 24913 ovolfiniun 25555 finiunmbl 25598 volfiniun 25601 itgfsum 25882 dvmptfsum 26033 pntrsumbnd 27628 mulsproplem12 28171 mulsproplem13 28172 mulsproplem14 28173 nmounbseqi 30809 nmounbseqiALT 30810 isch3 31273 dmdmd 32332 mdslmd1lem2 32358 sumdmdi 32452 dmdbr4ati 32453 dmdbr6ati 32455 gsumle 33074 gsumvsca1 33205 gsumvsca2 33206 pwsiga 34094 bnj1533 34828 bnj110 34834 bnj1523 35047 dfon2lem8 35754 meran1 36377 bj-stabpeirce 36520 bj-bi3ant 36555 bj-ssbid2ALT 36629 bj-spnfw 36636 bj-spst 36655 bj-19.23bit 36657 wl-syls2 37463 heibor1lem 37769 isltrn2N 40077 cdlemefrs32fva 40357 fiinfi 43535 con3ALT2 44501 alrim3con13v 44504 islinindfis 48178 setrec1lem4 48782 |
Copyright terms: Public domain | W3C validator |