Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imim1i | Structured version Visualization version GIF version |
Description: Inference adding common consequents in an implication, thereby interchanging the original antecedent and consequent. Inference associated with imim1 83. Its associated inference is syl 17. (Contributed by NM, 28-Dec-1992.) (Proof shortened by Wolf Lammen, 4-Aug-2012.) |
Ref | Expression |
---|---|
imim1i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
imim1i | ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | id 22 | . 2 ⊢ (𝜒 → 𝜒) | |
3 | 1, 2 | imim12i 62 | 1 ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: jarr 106 jarl 125 impt 178 pm3.41 492 pm3.42 493 pm2.67-2 888 jaob 958 3jaob 1424 merco1 1717 19.21v 1943 19.39 1989 moimi 2545 r19.30OLD 3266 r19.37 3270 axrep2 5208 dmcosseq 5871 fliftfun 7163 tz7.48lem 8242 ssfi 8918 ac6sfi 8988 frfi 8989 domunfican 9017 iunfi 9037 finsschain 9056 cantnfval2 9357 cantnflt 9360 cnfcom 9388 kmlem1 9837 kmlem13 9849 axpowndlem2 10285 wunfi 10408 ingru 10502 xrub 12975 hashf1lem2 14098 caubnd 14998 fsum2d 15411 fsumabs 15441 fsumrlim 15451 fsumo1 15452 fsumiun 15461 fprod2d 15619 ablfac1eulem 19590 mplcoe1 21148 mplcoe5 21151 mdetunilem9 21677 t1t0 22407 fiuncmp 22463 ptcmpfi 22872 isfil2 22915 fsumcn 23939 ovolfiniun 24570 finiunmbl 24613 volfiniun 24616 itgfsum 24896 dvmptfsum 25044 pntrsumbnd 26619 nmounbseqi 29040 nmounbseqiALT 29041 isch3 29504 dmdmd 30563 mdslmd1lem2 30589 sumdmdi 30683 dmdbr4ati 30684 dmdbr6ati 30686 gsumle 31252 gsumvsca1 31381 gsumvsca2 31382 pwsiga 31998 bnj1533 32732 bnj110 32738 bnj1523 32951 dfon2lem8 33672 meran1 34527 bj-stabpeirce 34661 bj-bi3ant 34698 bj-ssbid2ALT 34771 bj-spnfw 34778 bj-spst 34798 bj-19.23bit 34800 wl-syls2 35595 heibor1lem 35894 isltrn2N 38061 cdlemefrs32fva 38341 fiinfi 41069 con3ALT2 42039 alrim3con13v 42042 islinindfis 45678 setrec1lem4 46282 |
Copyright terms: Public domain | W3C validator |