![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imim1i | Structured version Visualization version GIF version |
Description: Inference adding common consequents in an implication, thereby interchanging the original antecedent and consequent. Inference associated with imim1 83. Its associated inference is syl 17. (Contributed by NM, 28-Dec-1992.) (Proof shortened by Wolf Lammen, 4-Aug-2012.) |
Ref | Expression |
---|---|
imim1i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
imim1i | ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | id 22 | . 2 ⊢ (𝜒 → 𝜒) | |
3 | 1, 2 | imim12i 62 | 1 ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: jarr 106 jarl 125 impt 178 pm3.41 494 pm3.42 495 pm2.67-2 891 jaob 961 3jaob 1427 merco1 1716 19.21v 1943 19.39 1989 moimi 2540 r19.30OLD 3122 r19.37 3260 axrep2 5289 dmcosseq 5973 fliftfun 7309 tz7.48lem 8441 ssfi 9173 ac6sfi 9287 frfi 9288 domunfican 9320 iunfi 9340 finsschain 9359 cantnfval2 9664 cantnflt 9667 cnfcom 9695 kmlem1 10145 kmlem13 10157 axpowndlem2 10593 wunfi 10716 ingru 10810 xrub 13291 hashf1lem2 14417 caubnd 15305 fsum2d 15717 fsumabs 15747 fsumrlim 15757 fsumo1 15758 fsumiun 15767 fprod2d 15925 ablfac1eulem 19942 mplcoe1 21592 mplcoe5 21595 mdetunilem9 22122 t1t0 22852 fiuncmp 22908 ptcmpfi 23317 isfil2 23360 fsumcn 24386 ovolfiniun 25018 finiunmbl 25061 volfiniun 25064 itgfsum 25344 dvmptfsum 25492 pntrsumbnd 27069 mulsproplem12 27583 mulsproplem13 27584 mulsproplem14 27585 nmounbseqi 30030 nmounbseqiALT 30031 isch3 30494 dmdmd 31553 mdslmd1lem2 31579 sumdmdi 31673 dmdbr4ati 31674 dmdbr6ati 31676 gsumle 32242 gsumvsca1 32371 gsumvsca2 32372 pwsiga 33128 bnj1533 33863 bnj110 33869 bnj1523 34082 dfon2lem8 34762 meran1 35296 bj-stabpeirce 35430 bj-bi3ant 35467 bj-ssbid2ALT 35540 bj-spnfw 35547 bj-spst 35567 bj-19.23bit 35569 wl-syls2 36378 heibor1lem 36677 isltrn2N 38991 cdlemefrs32fva 39271 fiinfi 42324 con3ALT2 43291 alrim3con13v 43294 islinindfis 47130 setrec1lem4 47735 |
Copyright terms: Public domain | W3C validator |