![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imim1i | Structured version Visualization version GIF version |
Description: Inference adding common consequents in an implication, thereby interchanging the original antecedent and consequent. Inference associated with imim1 83. Its associated inference is syl 17. (Contributed by NM, 28-Dec-1992.) (Proof shortened by Wolf Lammen, 4-Aug-2012.) |
Ref | Expression |
---|---|
imim1i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
imim1i | ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | id 22 | . 2 ⊢ (𝜒 → 𝜒) | |
3 | 1, 2 | imim12i 62 | 1 ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: jarr 106 jarl 125 impt 178 pm3.41 493 pm3.42 494 pm2.67-2 890 jaob 960 3jaob 1426 merco1 1715 19.21v 1942 19.39 1988 moimi 2539 r19.30OLD 3121 r19.37 3259 axrep2 5287 dmcosseq 5970 fliftfun 7305 tz7.48lem 8437 ssfi 9169 ac6sfi 9283 frfi 9284 domunfican 9316 iunfi 9336 finsschain 9355 cantnfval2 9660 cantnflt 9663 cnfcom 9691 kmlem1 10141 kmlem13 10153 axpowndlem2 10589 wunfi 10712 ingru 10806 xrub 13287 hashf1lem2 14413 caubnd 15301 fsum2d 15713 fsumabs 15743 fsumrlim 15753 fsumo1 15754 fsumiun 15763 fprod2d 15921 ablfac1eulem 19936 mplcoe1 21583 mplcoe5 21586 mdetunilem9 22113 t1t0 22843 fiuncmp 22899 ptcmpfi 23308 isfil2 23351 fsumcn 24377 ovolfiniun 25009 finiunmbl 25052 volfiniun 25055 itgfsum 25335 dvmptfsum 25483 pntrsumbnd 27058 mulsproplem12 27572 mulsproplem13 27573 mulsproplem14 27574 nmounbseqi 30017 nmounbseqiALT 30018 isch3 30481 dmdmd 31540 mdslmd1lem2 31566 sumdmdi 31660 dmdbr4ati 31661 dmdbr6ati 31663 gsumle 32229 gsumvsca1 32358 gsumvsca2 32359 pwsiga 33116 bnj1533 33851 bnj110 33857 bnj1523 34070 dfon2lem8 34750 meran1 35284 bj-stabpeirce 35418 bj-bi3ant 35455 bj-ssbid2ALT 35528 bj-spnfw 35535 bj-spst 35555 bj-19.23bit 35557 wl-syls2 36366 heibor1lem 36665 isltrn2N 38979 cdlemefrs32fva 39259 fiinfi 42309 con3ALT2 43276 alrim3con13v 43279 islinindfis 47083 setrec1lem4 47688 |
Copyright terms: Public domain | W3C validator |