Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-luk-imim2 Structured version   Visualization version   GIF version

Theorem wl-luk-imim2 35538
Description: A closed form of syllogism (see syl 17). Theorem *2.05 of [WhiteheadRussell] p. 100. Copy of imim2 58 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
wl-luk-imim2 ((𝜑𝜓) → ((𝜒𝜑) → (𝜒𝜓)))

Proof of Theorem wl-luk-imim2
StepHypRef Expression
1 ax-luk1 35517 . 2 ((𝜒𝜑) → ((𝜑𝜓) → (𝜒𝜓)))
21wl-luk-com12 35534 1 ((𝜑𝜓) → ((𝜒𝜑) → (𝜒𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-luk1 35517  ax-luk2 35518  ax-luk3 35519
This theorem is referenced by:  wl-luk-ax2  35540
  Copyright terms: Public domain W3C validator