| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-luk-ja | Structured version Visualization version GIF version | ||
| Description: Inference joining the antecedents of two premises. Copy of ja 186 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| wl-luk-ja.1 | ⊢ (¬ 𝜑 → 𝜒) |
| wl-luk-ja.2 | ⊢ (𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| wl-luk-ja | ⊢ ((𝜑 → 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wl-luk-ja.1 | . . . 4 ⊢ (¬ 𝜑 → 𝜒) | |
| 2 | 1 | wl-luk-con1i 37439 | . . 3 ⊢ (¬ 𝜒 → 𝜑) |
| 3 | wl-luk-ja.2 | . . . 4 ⊢ (𝜓 → 𝜒) | |
| 4 | 3 | wl-luk-imim2i 37432 | . . 3 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
| 5 | 2, 4 | wl-luk-imtrid 37426 | . 2 ⊢ ((𝜑 → 𝜓) → (¬ 𝜒 → 𝜒)) |
| 6 | 5 | wl-luk-pm2.18d 37427 | 1 ⊢ ((𝜑 → 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-luk1 37420 ax-luk2 37421 ax-luk3 37422 |
| This theorem is referenced by: wl-luk-ax2 37443 |
| Copyright terms: Public domain | W3C validator |