Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-luk-a1d Structured version   Visualization version   GIF version

Theorem wl-luk-a1d 35612
Description: Deduction introducing an embedded antecedent. Copy of imim2 58 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
wl-luk-a1d.1 (𝜑𝜓)
Assertion
Ref Expression
wl-luk-a1d (𝜑 → (𝜒𝜓))

Proof of Theorem wl-luk-a1d
StepHypRef Expression
1 wl-luk-a1d.1 . 2 (𝜑𝜓)
2 wl-luk-ax1 35605 . 2 (𝜓 → (𝜒𝜓))
31, 2wl-luk-syl 35595 1 (𝜑 → (𝜒𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-luk1 35590  ax-luk2 35591  ax-luk3 35592
This theorem is referenced by:  wl-luk-ax2  35613
  Copyright terms: Public domain W3C validator