New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 2exsb | Unicode version |
Description: An equivalent expression for double existence. (Contributed by NM, 2-Feb-2005.) |
Ref | Expression |
---|---|
2exsb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exsb 2130 | . . . 4 | |
2 | 1 | exbii 1582 | . . 3 |
3 | excom 1741 | . . 3 | |
4 | 2, 3 | bitri 240 | . 2 |
5 | exsb 2130 | . . . . 5 | |
6 | impexp 433 | . . . . . . . . 9 | |
7 | 6 | albii 1566 | . . . . . . . 8 |
8 | 19.21v 1890 | . . . . . . . 8 | |
9 | 7, 8 | bitr2i 241 | . . . . . . 7 |
10 | 9 | albii 1566 | . . . . . 6 |
11 | 10 | exbii 1582 | . . . . 5 |
12 | 5, 11 | bitri 240 | . . . 4 |
13 | 12 | exbii 1582 | . . 3 |
14 | excom 1741 | . . 3 | |
15 | 13, 14 | bitri 240 | . 2 |
16 | 4, 15 | bitri 240 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 wal 1540 wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: 2eu6 2289 |
Copyright terms: Public domain | W3C validator |