Proof of Theorem 2exsb
Step | Hyp | Ref
| Expression |
1 | | exsb 2130 |
. . . 4
⊢ (∃yφ ↔ ∃w∀y(y = w →
φ)) |
2 | 1 | exbii 1582 |
. . 3
⊢ (∃x∃yφ ↔ ∃x∃w∀y(y = w →
φ)) |
3 | | excom 1741 |
. . 3
⊢ (∃x∃w∀y(y = w →
φ) ↔ ∃w∃x∀y(y = w →
φ)) |
4 | 2, 3 | bitri 240 |
. 2
⊢ (∃x∃yφ ↔ ∃w∃x∀y(y = w →
φ)) |
5 | | exsb 2130 |
. . . . 5
⊢ (∃x∀y(y = w →
φ) ↔ ∃z∀x(x = z →
∀y(y = w → φ))) |
6 | | impexp 433 |
. . . . . . . . 9
⊢ (((x = z ∧ y = w) → φ)
↔ (x = z → (y =
w → φ))) |
7 | 6 | albii 1566 |
. . . . . . . 8
⊢ (∀y((x = z ∧ y = w) → φ)
↔ ∀y(x = z → (y =
w → φ))) |
8 | | 19.21v 1890 |
. . . . . . . 8
⊢ (∀y(x = z →
(y = w
→ φ)) ↔ (x = z →
∀y(y = w → φ))) |
9 | 7, 8 | bitr2i 241 |
. . . . . . 7
⊢ ((x = z →
∀y(y = w → φ))
↔ ∀y((x = z ∧ y = w) →
φ)) |
10 | 9 | albii 1566 |
. . . . . 6
⊢ (∀x(x = z →
∀y(y = w → φ))
↔ ∀x∀y((x = z ∧ y = w) →
φ)) |
11 | 10 | exbii 1582 |
. . . . 5
⊢ (∃z∀x(x = z →
∀y(y = w → φ))
↔ ∃z∀x∀y((x = z ∧ y = w) →
φ)) |
12 | 5, 11 | bitri 240 |
. . . 4
⊢ (∃x∀y(y = w →
φ) ↔ ∃z∀x∀y((x = z ∧ y = w) → φ)) |
13 | 12 | exbii 1582 |
. . 3
⊢ (∃w∃x∀y(y = w →
φ) ↔ ∃w∃z∀x∀y((x = z ∧ y = w) → φ)) |
14 | | excom 1741 |
. . 3
⊢ (∃w∃z∀x∀y((x = z ∧ y = w) → φ)
↔ ∃z∃w∀x∀y((x = z ∧ y = w) →
φ)) |
15 | 13, 14 | bitri 240 |
. 2
⊢ (∃w∃x∀y(y = w →
φ) ↔ ∃z∃w∀x∀y((x = z ∧ y = w) → φ)) |
16 | 4, 15 | bitri 240 |
1
⊢ (∃x∃yφ ↔ ∃z∃w∀x∀y((x = z ∧ y = w) → φ)) |