New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 2ralunsn | Unicode version |
Description: Double restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012.) |
Ref | Expression |
---|---|
2ralunsn.1 | |
2ralunsn.2 | |
2ralunsn.3 |
Ref | Expression |
---|---|
2ralunsn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ralunsn.2 | . . . 4 | |
2 | 1 | ralunsn 3880 | . . 3 |
3 | 2 | ralbidv 2635 | . 2 |
4 | 2ralunsn.1 | . . . . . 6 | |
5 | 4 | ralbidv 2635 | . . . . 5 |
6 | 2ralunsn.3 | . . . . 5 | |
7 | 5, 6 | anbi12d 691 | . . . 4 |
8 | 7 | ralunsn 3880 | . . 3 |
9 | r19.26 2747 | . . . 4 | |
10 | 9 | anbi1i 676 | . . 3 |
11 | 8, 10 | syl6bb 252 | . 2 |
12 | 3, 11 | bitrd 244 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 wceq 1642 wcel 1710 wral 2615 cun 3208 csn 3738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-un 3215 df-sn 3742 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |