| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 2ralunsn | GIF version | ||
| Description: Double restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012.) |
| Ref | Expression |
|---|---|
| 2ralunsn.1 | ⊢ (x = B → (φ ↔ χ)) |
| 2ralunsn.2 | ⊢ (y = B → (φ ↔ ψ)) |
| 2ralunsn.3 | ⊢ (x = B → (ψ ↔ θ)) |
| Ref | Expression |
|---|---|
| 2ralunsn | ⊢ (B ∈ C → (∀x ∈ (A ∪ {B})∀y ∈ (A ∪ {B})φ ↔ ((∀x ∈ A ∀y ∈ A φ ∧ ∀x ∈ A ψ) ∧ (∀y ∈ A χ ∧ θ)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralunsn.2 | . . . 4 ⊢ (y = B → (φ ↔ ψ)) | |
| 2 | 1 | ralunsn 3880 | . . 3 ⊢ (B ∈ C → (∀y ∈ (A ∪ {B})φ ↔ (∀y ∈ A φ ∧ ψ))) |
| 3 | 2 | ralbidv 2635 | . 2 ⊢ (B ∈ C → (∀x ∈ (A ∪ {B})∀y ∈ (A ∪ {B})φ ↔ ∀x ∈ (A ∪ {B})(∀y ∈ A φ ∧ ψ))) |
| 4 | 2ralunsn.1 | . . . . . 6 ⊢ (x = B → (φ ↔ χ)) | |
| 5 | 4 | ralbidv 2635 | . . . . 5 ⊢ (x = B → (∀y ∈ A φ ↔ ∀y ∈ A χ)) |
| 6 | 2ralunsn.3 | . . . . 5 ⊢ (x = B → (ψ ↔ θ)) | |
| 7 | 5, 6 | anbi12d 691 | . . . 4 ⊢ (x = B → ((∀y ∈ A φ ∧ ψ) ↔ (∀y ∈ A χ ∧ θ))) |
| 8 | 7 | ralunsn 3880 | . . 3 ⊢ (B ∈ C → (∀x ∈ (A ∪ {B})(∀y ∈ A φ ∧ ψ) ↔ (∀x ∈ A (∀y ∈ A φ ∧ ψ) ∧ (∀y ∈ A χ ∧ θ)))) |
| 9 | r19.26 2747 | . . . 4 ⊢ (∀x ∈ A (∀y ∈ A φ ∧ ψ) ↔ (∀x ∈ A ∀y ∈ A φ ∧ ∀x ∈ A ψ)) | |
| 10 | 9 | anbi1i 676 | . . 3 ⊢ ((∀x ∈ A (∀y ∈ A φ ∧ ψ) ∧ (∀y ∈ A χ ∧ θ)) ↔ ((∀x ∈ A ∀y ∈ A φ ∧ ∀x ∈ A ψ) ∧ (∀y ∈ A χ ∧ θ))) |
| 11 | 8, 10 | syl6bb 252 | . 2 ⊢ (B ∈ C → (∀x ∈ (A ∪ {B})(∀y ∈ A φ ∧ ψ) ↔ ((∀x ∈ A ∀y ∈ A φ ∧ ∀x ∈ A ψ) ∧ (∀y ∈ A χ ∧ θ)))) |
| 12 | 3, 11 | bitrd 244 | 1 ⊢ (B ∈ C → (∀x ∈ (A ∪ {B})∀y ∈ (A ∪ {B})φ ↔ ((∀x ∈ A ∀y ∈ A φ ∧ ∀x ∈ A ψ) ∧ (∀y ∈ A χ ∧ θ)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ∀wral 2615 ∪ cun 3208 {csn 3738 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-un 3215 df-sn 3742 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |