New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > abid2f | Unicode version |
Description: A simplification of class abstraction. Theorem 5.2 of [Quine] p. 35. (Contributed by NM, 5-Sep-2011.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
abid2f.1 |
Ref | Expression |
---|---|
abid2f |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abid2f.1 | . . . . 5 | |
2 | nfab1 2492 | . . . . 5 | |
3 | 1, 2 | cleqf 2514 | . . . 4 |
4 | abid 2341 | . . . . . 6 | |
5 | 4 | bibi2i 304 | . . . . 5 |
6 | 5 | albii 1566 | . . . 4 |
7 | 3, 6 | bitri 240 | . . 3 |
8 | biid 227 | . . 3 | |
9 | 7, 8 | mpgbir 1550 | . 2 |
10 | 9 | eqcomi 2357 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wb 176 wal 1540 wceq 1642 wcel 1710 cab 2339 wnfc 2477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |