New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > abid2f | GIF version |
Description: A simplification of class abstraction. Theorem 5.2 of [Quine] p. 35. (Contributed by NM, 5-Sep-2011.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
abid2f.1 | ⊢ ℲxA |
Ref | Expression |
---|---|
abid2f | ⊢ {x ∣ x ∈ A} = A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abid2f.1 | . . . . 5 ⊢ ℲxA | |
2 | nfab1 2492 | . . . . 5 ⊢ Ⅎx{x ∣ x ∈ A} | |
3 | 1, 2 | cleqf 2514 | . . . 4 ⊢ (A = {x ∣ x ∈ A} ↔ ∀x(x ∈ A ↔ x ∈ {x ∣ x ∈ A})) |
4 | abid 2341 | . . . . . 6 ⊢ (x ∈ {x ∣ x ∈ A} ↔ x ∈ A) | |
5 | 4 | bibi2i 304 | . . . . 5 ⊢ ((x ∈ A ↔ x ∈ {x ∣ x ∈ A}) ↔ (x ∈ A ↔ x ∈ A)) |
6 | 5 | albii 1566 | . . . 4 ⊢ (∀x(x ∈ A ↔ x ∈ {x ∣ x ∈ A}) ↔ ∀x(x ∈ A ↔ x ∈ A)) |
7 | 3, 6 | bitri 240 | . . 3 ⊢ (A = {x ∣ x ∈ A} ↔ ∀x(x ∈ A ↔ x ∈ A)) |
8 | biid 227 | . . 3 ⊢ (x ∈ A ↔ x ∈ A) | |
9 | 7, 8 | mpgbir 1550 | . 2 ⊢ A = {x ∣ x ∈ A} |
10 | 9 | eqcomi 2357 | 1 ⊢ {x ∣ x ∈ A} = A |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∀wal 1540 = wceq 1642 ∈ wcel 1710 {cab 2339 Ⅎwnfc 2477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |