NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ax12olem3 Unicode version

Theorem ax12olem3 1929
Description: Lemma for ax12o 1934. Show the equivalence of an intermediate equivalent to ax12o 1934 with the conjunction of ax-12 1925 and a variant with negated equalities. (Contributed by NM, 24-Dec-2015.)
Assertion
Ref Expression
ax12olem3

Proof of Theorem ax12olem3
StepHypRef Expression
1 sp 1747 . . . . . 6
21con2i 112 . . . . 5
32imim1i 54 . . . 4
43imim2i 13 . . 3
5 sp 1747 . . . . . 6
65imim2i 13 . . . . 5
76con1d 116 . . . 4
87imim2i 13 . . 3
94, 8jca 518 . 2
10 con1 120 . . . . . 6
1110imim1d 69 . . . . 5
1211com12 27 . . . 4
1312imim3i 55 . . 3
1413imp 418 . 2
159, 14impbii 180 1
Colors of variables: wff setvar class
Syntax hints:   wn 3   wi 4   wb 176   wa 358  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542
This theorem is referenced by:  ax12olem4  1930
  Copyright terms: Public domain W3C validator