New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ax12olem3 | Unicode version |
Description: Lemma for ax12o 1934. Show the equivalence of an intermediate equivalent to ax12o 1934 with the conjunction of ax-12 1925 and a variant with negated equalities. (Contributed by NM, 24-Dec-2015.) |
Ref | Expression |
---|---|
ax12olem3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 1747 | . . . . . 6 | |
2 | 1 | con2i 112 | . . . . 5 |
3 | 2 | imim1i 54 | . . . 4 |
4 | 3 | imim2i 13 | . . 3 |
5 | sp 1747 | . . . . . 6 | |
6 | 5 | imim2i 13 | . . . . 5 |
7 | 6 | con1d 116 | . . . 4 |
8 | 7 | imim2i 13 | . . 3 |
9 | 4, 8 | jca 518 | . 2 |
10 | con1 120 | . . . . . 6 | |
11 | 10 | imim1d 69 | . . . . 5 |
12 | 11 | com12 27 | . . . 4 |
13 | 12 | imim3i 55 | . . 3 |
14 | 13 | imp 418 | . 2 |
15 | 9, 14 | impbii 180 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wi 4 wb 176 wa 358 wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 |
This theorem is referenced by: ax12olem4 1930 |
Copyright terms: Public domain | W3C validator |