New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > jca | Unicode version |
Description: Deduce conjunction of the consequents of two implications ("join consequents with 'and'"). Equivalent to the natural deduction rule I ( introduction), see natded in set.mm. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 25-Oct-2012.) |
Ref | Expression |
---|---|
jca.1 | |
jca.2 |
Ref | Expression |
---|---|
jca |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jca.1 | . 2 | |
2 | jca.2 | . 2 | |
3 | pm3.2 434 | . 2 | |
4 | 1, 2, 3 | sylc 56 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: jca31 520 jca32 521 jcai 522 jctil 523 jctir 524 ancli 534 ancri 535 sylanbrc 645 jaob 758 jcab 833 mpbi2and 887 mpbir2and 888 pm4.82 894 rnlem 931 syl22anc 1183 syl112anc 1186 syl121anc 1187 syl211anc 1188 syl23anc 1189 syl32anc 1190 syl122anc 1191 syl212anc 1192 syl221anc 1193 syl222anc 1198 syl123anc 1199 syl132anc 1200 syl213anc 1201 syl231anc 1202 syl312anc 1203 syl321anc 1204 syl223anc 1208 syl232anc 1209 syl322anc 1210 syl233anc 1211 syl323anc 1212 syl332anc 1213 19.26 1593 19.40 1609 ax12olem3 1929 eu2 2229 mooran2 2259 2eu1 2284 2eu3 2286 2eu6 2289 datisi 2313 felapton 2317 darapti 2318 dimatis 2320 fresison 2321 fesapo 2323 r19.26 2747 r19.40 2763 eqvinc 2967 reu6 3026 reu3 3027 unineq 3506 undif3 3516 un00 3587 uniintsn 3964 opkthg 4132 addcnnul 4454 preaddccan2 4456 ssfin 4471 ncfinprop 4475 tfinprop 4490 tfinltfin 4502 eventfin 4518 oddtfin 4519 sfindbl 4531 opth 4603 opexb 4604 opelopabsb 4698 ideqg 4869 ideqg2 4870 dminss 5042 imainss 5043 xpnz 5046 ssxpb 5056 funeu 5132 fun11uni 5163 funssxp 5234 ffdm 5235 f00 5250 dffo2 5274 fodmrnu 5278 foco 5280 fun11iun 5306 f1o00 5318 fv3 5342 dff2 5420 dff3 5421 dffo4 5424 ffnfv 5428 ffvresb 5432 fsn2 5435 fconstfv 5457 isocnv 5492 isotr 5496 extd 5924 symd 5925 mapsspm 6022 map0 6026 enadj 6061 enmap2lem3 6066 enmap2 6069 enmap1lem3 6072 enprmaplem3 6079 enprmaplem6 6082 elnc 6126 peano4nc 6151 ce0addcnnul 6180 sbthlem3 6206 nmembers1lem3 6271 nchoicelem17 6306 |
Copyright terms: Public domain | W3C validator |