Proof of Theorem ax12olem3
Step | Hyp | Ref
| Expression |
1 | | sp 1747 |
. . . . . 6
⊢ (∀x ¬
y = z
→ ¬ y = z) |
2 | 1 | con2i 112 |
. . . . 5
⊢ (y = z →
¬ ∀x ¬ y =
z) |
3 | 2 | imim1i 54 |
. . . 4
⊢ ((¬ ∀x ¬
y = z
→ ∀x y = z) → (y =
z → ∀x y = z)) |
4 | 3 | imim2i 13 |
. . 3
⊢ ((¬ x = y →
(¬ ∀x ¬ y =
z → ∀x y = z)) →
(¬ x = y → (y =
z → ∀x y = z))) |
5 | | sp 1747 |
. . . . . 6
⊢ (∀x y = z →
y = z) |
6 | 5 | imim2i 13 |
. . . . 5
⊢ ((¬ ∀x ¬
y = z
→ ∀x y = z) → (¬ ∀x ¬
y = z
→ y = z)) |
7 | 6 | con1d 116 |
. . . 4
⊢ ((¬ ∀x ¬
y = z
→ ∀x y = z) → (¬ y = z →
∀x
¬ y = z)) |
8 | 7 | imim2i 13 |
. . 3
⊢ ((¬ x = y →
(¬ ∀x ¬ y =
z → ∀x y = z)) →
(¬ x = y → (¬ y = z →
∀x
¬ y = z))) |
9 | 4, 8 | jca 518 |
. 2
⊢ ((¬ x = y →
(¬ ∀x ¬ y =
z → ∀x y = z)) →
((¬ x = y → (y =
z → ∀x y = z)) ∧ (¬ x =
y → (¬ y = z →
∀x
¬ y = z)))) |
10 | | con1 120 |
. . . . . 6
⊢ ((¬ y = z →
∀x
¬ y = z) → (¬ ∀x ¬
y = z
→ y = z)) |
11 | 10 | imim1d 69 |
. . . . 5
⊢ ((¬ y = z →
∀x
¬ y = z) → ((y =
z → ∀x y = z) →
(¬ ∀x ¬ y =
z → ∀x y = z))) |
12 | 11 | com12 27 |
. . . 4
⊢ ((y = z →
∀x
y = z)
→ ((¬ y = z → ∀x ¬
y = z)
→ (¬ ∀x ¬ y =
z → ∀x y = z))) |
13 | 12 | imim3i 55 |
. . 3
⊢ ((¬ x = y →
(y = z
→ ∀x y = z)) → ((¬ x = y →
(¬ y = z → ∀x ¬
y = z))
→ (¬ x = y → (¬ ∀x ¬
y = z
→ ∀x y = z)))) |
14 | 13 | imp 418 |
. 2
⊢ (((¬ x = y →
(y = z
→ ∀x y = z)) ∧ (¬
x = y
→ (¬ y = z → ∀x ¬
y = z))) → (¬ x = y →
(¬ ∀x ¬ y =
z → ∀x y = z))) |
15 | 9, 14 | impbii 180 |
1
⊢ ((¬ x = y →
(¬ ∀x ¬ y =
z → ∀x y = z)) ↔
((¬ x = y → (y =
z → ∀x y = z)) ∧ (¬ x =
y → (¬ y = z →
∀x
¬ y = z)))) |