New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > axi12 | Unicode version |
Description: Axiom of Quantifier
Introduction (intuitionistic logic axiom ax-i12).
In classical logic, this is mostly a restatement of ax12o 1934 (with one additional quantifier). But in intuitionistic logic, changing the negations and implications to disjunctions makes it stronger. (Contributed by Jim Kingdon, 31-Dec-2017.) |
Ref | Expression |
---|---|
axi12 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax12o 1934 | . . . . . . 7 | |
2 | df-or 359 | . . . . . . . 8 | |
3 | 2 | imbi2i 303 | . . . . . . 7 |
4 | 1, 3 | mpbir 200 | . . . . . 6 |
5 | df-or 359 | . . . . . 6 | |
6 | 4, 5 | mpbir 200 | . . . . 5 |
7 | orass 510 | . . . . 5 | |
8 | 6, 7 | mpbir 200 | . . . 4 |
9 | 8 | ax-gen 1546 | . . 3 |
10 | nfa1 1788 | . . . . 5 | |
11 | nfa1 1788 | . . . . 5 | |
12 | 10, 11 | nfor 1836 | . . . 4 |
13 | 12 | 19.32 1875 | . . 3 |
14 | 9, 13 | mpbi 199 | . 2 |
15 | orass 510 | . 2 | |
16 | 14, 15 | mpbi 199 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wi 4 wo 357 wal 1540 wceq 1642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |