Proof of Theorem axi12
| Step | Hyp | Ref
 | Expression | 
| 1 |   | ax12o 1934 | 
. . . . . . 7
⊢ (¬ ∀z z = x →
(¬ ∀z z = y → (x =
y → ∀z x = y))) | 
| 2 |   | df-or 359 | 
. . . . . . . 8
⊢ ((∀z z = y  ∨ (x = y → ∀z x = y)) ↔
(¬ ∀z z = y → (x =
y → ∀z x = y))) | 
| 3 | 2 | imbi2i 303 | 
. . . . . . 7
⊢ ((¬ ∀z z = x →
(∀z
z = y
 ∨ (x =
y → ∀z x = y))) ↔
(¬ ∀z z = x → (¬ ∀z z = y →
(x = y
→ ∀z x = y)))) | 
| 4 | 1, 3 | mpbir 200 | 
. . . . . 6
⊢ (¬ ∀z z = x →
(∀z
z = y
 ∨ (x =
y → ∀z x = y))) | 
| 5 |   | df-or 359 | 
. . . . . 6
⊢ ((∀z z = x  ∨ (∀z z = y  ∨ (x = y →
∀z
x = y))) ↔ (¬ ∀z z = x →
(∀z
z = y
 ∨ (x =
y → ∀z x = y)))) | 
| 6 | 4, 5 | mpbir 200 | 
. . . . 5
⊢ (∀z z = x  ∨ (∀z z = y  ∨ (x = y →
∀z
x = y))) | 
| 7 |   | orass 510 | 
. . . . 5
⊢ (((∀z z = x  ∨ ∀z z = y)  ∨ (x = y →
∀z
x = y))
↔ (∀z z = x  ∨ (∀z z = y  ∨ (x = y → ∀z x = y)))) | 
| 8 | 6, 7 | mpbir 200 | 
. . . 4
⊢ ((∀z z = x  ∨ ∀z z = y)  ∨ (x = y →
∀z
x = y)) | 
| 9 | 8 | ax-gen 1546 | 
. . 3
⊢ ∀z((∀z z = x  ∨ ∀z z = y)  ∨ (x = y →
∀z
x = y)) | 
| 10 |   | nfa1 1788 | 
. . . . 5
⊢ Ⅎz∀z z = x | 
| 11 |   | nfa1 1788 | 
. . . . 5
⊢ Ⅎz∀z z = y | 
| 12 | 10, 11 | nfor 1836 | 
. . . 4
⊢ Ⅎz(∀z z = x  ∨ ∀z z = y) | 
| 13 | 12 | 19.32 1875 | 
. . 3
⊢ (∀z((∀z z = x  ∨ ∀z z = y)  ∨ (x = y →
∀z
x = y))
↔ ((∀z z = x  ∨ ∀z z = y)  ∨ ∀z(x = y → ∀z x = y))) | 
| 14 | 9, 13 | mpbi 199 | 
. 2
⊢ ((∀z z = x  ∨ ∀z z = y)  ∨ ∀z(x = y →
∀z
x = y)) | 
| 15 |   | orass 510 | 
. 2
⊢ (((∀z z = x  ∨ ∀z z = y)  ∨ ∀z(x = y →
∀z
x = y))
↔ (∀z z = x  ∨ (∀z z = y  ∨ ∀z(x = y → ∀z x = y)))) | 
| 16 | 14, 15 | mpbi 199 | 
1
⊢ (∀z z = x  ∨ (∀z z = y  ∨ ∀z(x = y →
∀z
x = y))) |