Proof of Theorem axi12
Step | Hyp | Ref
| Expression |
1 | | ax12o 1934 |
. . . . . . 7
⊢ (¬ ∀z z = x →
(¬ ∀z z = y → (x =
y → ∀z x = y))) |
2 | | df-or 359 |
. . . . . . . 8
⊢ ((∀z z = y ∨ (x = y → ∀z x = y)) ↔
(¬ ∀z z = y → (x =
y → ∀z x = y))) |
3 | 2 | imbi2i 303 |
. . . . . . 7
⊢ ((¬ ∀z z = x →
(∀z
z = y
∨ (x =
y → ∀z x = y))) ↔
(¬ ∀z z = x → (¬ ∀z z = y →
(x = y
→ ∀z x = y)))) |
4 | 1, 3 | mpbir 200 |
. . . . . 6
⊢ (¬ ∀z z = x →
(∀z
z = y
∨ (x =
y → ∀z x = y))) |
5 | | df-or 359 |
. . . . . 6
⊢ ((∀z z = x ∨ (∀z z = y ∨ (x = y →
∀z
x = y))) ↔ (¬ ∀z z = x →
(∀z
z = y
∨ (x =
y → ∀z x = y)))) |
6 | 4, 5 | mpbir 200 |
. . . . 5
⊢ (∀z z = x ∨ (∀z z = y ∨ (x = y →
∀z
x = y))) |
7 | | orass 510 |
. . . . 5
⊢ (((∀z z = x ∨ ∀z z = y) ∨ (x = y →
∀z
x = y))
↔ (∀z z = x ∨ (∀z z = y ∨ (x = y → ∀z x = y)))) |
8 | 6, 7 | mpbir 200 |
. . . 4
⊢ ((∀z z = x ∨ ∀z z = y) ∨ (x = y →
∀z
x = y)) |
9 | 8 | ax-gen 1546 |
. . 3
⊢ ∀z((∀z z = x ∨ ∀z z = y) ∨ (x = y →
∀z
x = y)) |
10 | | nfa1 1788 |
. . . . 5
⊢ Ⅎz∀z z = x |
11 | | nfa1 1788 |
. . . . 5
⊢ Ⅎz∀z z = y |
12 | 10, 11 | nfor 1836 |
. . . 4
⊢ Ⅎz(∀z z = x ∨ ∀z z = y) |
13 | 12 | 19.32 1875 |
. . 3
⊢ (∀z((∀z z = x ∨ ∀z z = y) ∨ (x = y →
∀z
x = y))
↔ ((∀z z = x ∨ ∀z z = y) ∨ ∀z(x = y → ∀z x = y))) |
14 | 9, 13 | mpbi 199 |
. 2
⊢ ((∀z z = x ∨ ∀z z = y) ∨ ∀z(x = y →
∀z
x = y)) |
15 | | orass 510 |
. 2
⊢ (((∀z z = x ∨ ∀z z = y) ∨ ∀z(x = y →
∀z
x = y))
↔ (∀z z = x ∨ (∀z z = y ∨ ∀z(x = y → ∀z x = y)))) |
16 | 14, 15 | mpbi 199 |
1
⊢ (∀z z = x ∨ (∀z z = y ∨ ∀z(x = y →
∀z
x = y))) |