NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  brdif Unicode version

Theorem brdif 4695
Description: The difference of two binary relations. (Contributed by Scott Fenton, 11-Apr-2011.)
Assertion
Ref Expression
brdif

Proof of Theorem brdif
StepHypRef Expression
1 eldif 3222 . 2
2 df-br 4641 . 2
3 df-br 4641 . . 3
4 df-br 4641 . . . 4
54notbii 287 . . 3
63, 5anbi12i 678 . 2
71, 2, 63bitr4i 268 1
Colors of variables: wff setvar class
Syntax hints:   wn 3   wb 176   wa 358   wcel 1710   cdif 3207  cop 4562   class class class wbr 4640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-dif 3216  df-br 4641
This theorem is referenced by:  fnfullfunlem1  5857  brltc  6115
  Copyright terms: Public domain W3C validator