![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > eldif | Unicode version |
Description: Membership in difference. (Contributed by SF, 10-Jan-2015.) |
Ref | Expression |
---|---|
eldif |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dif 3215 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | eleq2i 2417 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | elin 3219 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | elcomplg 3218 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 4 | pm5.32i 618 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 2, 3, 5 | 3bitri 262 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-dif 3215 |
This theorem is referenced by: dfdif2 3222 elsymdif 3223 difeqri 3387 eldifi 3388 eldifn 3389 neldif 3391 difdif 3392 ddif 3398 ssconb 3399 sscon 3400 ssdif 3401 dfss4 3489 dfun2 3490 dfin2 3491 difin 3492 indifdir 3511 undif3 3515 difin2 3516 symdif2 3520 dfnul2 3552 reldisj 3594 disj3 3595 undif4 3607 ssdif0 3609 pssnel 3615 difin0ss 3616 inssdif0 3617 inundif 3628 ssundif 3633 eldifsn 3839 difprsnss 3846 iundif2 4033 iindif2 4035 opkelimagekg 4271 dfpw2 4327 dfaddc2 4381 dfnnc2 4395 nnsucelrlem1 4424 nnsucelr 4428 ltfinex 4464 ssfin 4470 eqpw1relk 4479 ncfinraiselem2 4480 ncfinlowerlem1 4482 eqtfinrelk 4486 evenodddisjlem1 4515 nnadjoinlem1 4519 nnpweqlem1 4522 sfintfinlem1 4531 tfinnnlem1 4533 spfinex 4537 brdif 4694 cnvdif 5034 imadif 5171 releqmpt2 5809 funsex 5828 transex 5910 antisymex 5912 connexex 5913 foundex 5914 extex 5915 symex 5916 2p1e3c 6156 nchoicelem11 6299 nchoicelem16 6304 fnfreclem1 6317 |
Copyright terms: Public domain | W3C validator |