New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > brdif | GIF version |
Description: The difference of two binary relations. (Contributed by Scott Fenton, 11-Apr-2011.) |
Ref | Expression |
---|---|
brdif | ⊢ (A(R ∖ S)B ↔ (ARB ∧ ¬ ASB)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3222 | . 2 ⊢ (〈A, B〉 ∈ (R ∖ S) ↔ (〈A, B〉 ∈ R ∧ ¬ 〈A, B〉 ∈ S)) | |
2 | df-br 4641 | . 2 ⊢ (A(R ∖ S)B ↔ 〈A, B〉 ∈ (R ∖ S)) | |
3 | df-br 4641 | . . 3 ⊢ (ARB ↔ 〈A, B〉 ∈ R) | |
4 | df-br 4641 | . . . 4 ⊢ (ASB ↔ 〈A, B〉 ∈ S) | |
5 | 4 | notbii 287 | . . 3 ⊢ (¬ ASB ↔ ¬ 〈A, B〉 ∈ S) |
6 | 3, 5 | anbi12i 678 | . 2 ⊢ ((ARB ∧ ¬ ASB) ↔ (〈A, B〉 ∈ R ∧ ¬ 〈A, B〉 ∈ S)) |
7 | 1, 2, 6 | 3bitr4i 268 | 1 ⊢ (A(R ∖ S)B ↔ (ARB ∧ ¬ ASB)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 ∧ wa 358 ∈ wcel 1710 ∖ cdif 3207 〈cop 4562 class class class wbr 4640 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-br 4641 |
This theorem is referenced by: fnfullfunlem1 5857 brltc 6115 |
Copyright terms: Public domain | W3C validator |