New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cador | Unicode version |
Description: Write the adder carry in disjunctive normal form. (Contributed by Mario Carneiro, 4-Sep-2016.) |
Ref | Expression |
---|---|
cador | cadd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cad 1381 | . 2 cadd | |
2 | xor2 1310 | . . . . . . 7 | |
3 | 2 | rbaib 873 | . . . . . 6 |
4 | 3 | anbi1d 685 | . . . . 5 |
5 | ancom 437 | . . . . 5 | |
6 | andir 838 | . . . . 5 | |
7 | 4, 5, 6 | 3bitr3g 278 | . . . 4 |
8 | 7 | pm5.74i 236 | . . 3 |
9 | df-or 359 | . . 3 | |
10 | 3orass 937 | . . . 4 | |
11 | df-or 359 | . . . 4 | |
12 | 10, 11 | bitri 240 | . . 3 |
13 | 8, 9, 12 | 3bitr4i 268 | . 2 |
14 | 1, 13 | bitri 240 | 1 cadd |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wi 4 wb 176 wo 357 wa 358 w3o 933 wxo 1304 caddwcad 1379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-xor 1305 df-cad 1381 |
This theorem is referenced by: cadan 1392 cadnot 1394 cadcomb 1396 |
Copyright terms: Public domain | W3C validator |