NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  cador Unicode version

Theorem cador 1391
Description: Write the adder carry in disjunctive normal form. (Contributed by Mario Carneiro, 4-Sep-2016.)
Assertion
Ref Expression
cador cadd

Proof of Theorem cador
StepHypRef Expression
1 df-cad 1381 . 2 cadd  \/_
2 xor2 1310 . . . . . . 7  \/_
32rbaib 873 . . . . . 6  \/_
43anbi1d 685 . . . . 5  \/_
5 ancom 437 . . . . 5  \/_  \/_
6 andir 838 . . . . 5
74, 5, 63bitr3g 278 . . . 4  \/_
87pm5.74i 236 . . 3  \/_
9 df-or 359 . . 3  \/_  \/_
10 3orass 937 . . . 4
11 df-or 359 . . . 4
1210, 11bitri 240 . . 3
138, 9, 123bitr4i 268 . 2  \/_
141, 13bitri 240 1 cadd
Colors of variables: wff setvar class
Syntax hints:   wn 3   wi 4   wb 176   wo 357   wa 358   w3o 933    \/_ wxo 1304  caddwcad 1379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-xor 1305  df-cad 1381
This theorem is referenced by:  cadan  1392  cadnot  1394  cadcomb  1396
  Copyright terms: Public domain W3C validator