New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > anbi1d | Unicode version |
Description: Deduction adding a right conjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2013.) |
Ref | Expression |
---|---|
bid.1 |
Ref | Expression |
---|---|
anbi1d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bid.1 | . . 3 | |
2 | 1 | a1d 22 | . 2 |
3 | 2 | pm5.32rd 621 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: anbi1 687 anbi12d 691 bi2anan9 843 pm5.71 902 cador 1391 drsb1 2022 eleq1 2413 rexeqf 2804 reueq1f 2805 rmoeq1f 2806 rabeqf 2852 vtocl2gaf 2921 alexeq 2968 ceqex 2969 sbc2or 3054 sbc5 3070 rexss 3333 psstr 3373 ineq1 3450 difin2 3516 r19.28z 3642 r19.28zv 3645 ssunsn2 3865 eluni 3894 pwadjoin 4119 preq12bg 4128 elxpk 4196 opkelopkabg 4245 opkelxpkg 4247 otkelins2kg 4253 otkelins3kg 4254 opkelcokg 4261 opkelimagekg 4271 insklem 4304 ssfin 4470 ncfinraise 4481 evenodddisj 4516 nnpweq 4523 sfineq1 4526 vfinspss 4551 copsexg 4607 elopab 4696 setconslem6 4736 xpeq1 4798 elxpi 4800 vtoclr 4816 opbrop 4841 brswap2 4860 brco 4883 resopab2 5001 elxp4 5108 fun11 5159 feq2 5211 f1eq2 5254 f1eq3 5255 foeq2 5266 tz6.12-2 5346 dmfco 5381 respreima 5410 isoeq5 5486 isomin 5496 isoini 5497 f1oiso 5499 f1oiso2 5500 brswap 5509 oprabid 5550 dfoprab2 5558 eloprabga 5578 resoprab 5581 resoprab2 5582 ov 5595 ov3 5599 ov6g 5600 ovg 5601 mpteq12f 5655 mpt2eq123 5661 trtxp 5781 oqelins4 5794 txpcofun 5803 qrpprod 5836 dmpprod 5840 clos1eq1 5874 trd 5921 frd 5922 elpmg 6013 lecex 6115 ncspw1eu 6159 leltctr 6212 ce2le 6233 nmembers1lem1 6268 frecxp 6314 fnfrec 6320 |
Copyright terms: Public domain | W3C validator |