| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > cadan | Unicode version | ||
| Description: Write the adder carry in conjunctive normal form. (Contributed by Mario Carneiro, 4-Sep-2016.) |
| Ref | Expression |
|---|---|
| cadan |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordi 834 |
. . . 4
| |
| 2 | ordir 835 |
. . . . . 6
| |
| 3 | simpr 447 |
. . . . . . . . . . 11
| |
| 4 | 3 | con3i 127 |
. . . . . . . . . 10
|
| 5 | biorf 394 |
. . . . . . . . . 10
| |
| 6 | 4, 5 | syl 15 |
. . . . . . . . 9
|
| 7 | 6 | pm5.74i 236 |
. . . . . . . 8
|
| 8 | df-or 359 |
. . . . . . . 8
| |
| 9 | df-or 359 |
. . . . . . . 8
| |
| 10 | 7, 8, 9 | 3bitr4i 268 |
. . . . . . 7
|
| 11 | orcom 376 |
. . . . . . 7
| |
| 12 | orcom 376 |
. . . . . . 7
| |
| 13 | 10, 11, 12 | 3bitr4i 268 |
. . . . . 6
|
| 14 | orcom 376 |
. . . . . . 7
| |
| 15 | 14 | anbi2i 675 |
. . . . . 6
|
| 16 | 2, 13, 15 | 3bitr3i 266 |
. . . . 5
|
| 17 | simpr 447 |
. . . . . . . . . . 11
| |
| 18 | 17 | con3i 127 |
. . . . . . . . . 10
|
| 19 | biorf 394 |
. . . . . . . . . . 11
| |
| 20 | orcom 376 |
. . . . . . . . . . 11
| |
| 21 | 19, 20 | syl6bb 252 |
. . . . . . . . . 10
|
| 22 | 18, 21 | syl 15 |
. . . . . . . . 9
|
| 23 | 22 | pm5.74i 236 |
. . . . . . . 8
|
| 24 | df-or 359 |
. . . . . . . 8
| |
| 25 | df-or 359 |
. . . . . . . 8
| |
| 26 | 23, 24, 25 | 3bitr4i 268 |
. . . . . . 7
|
| 27 | orcom 376 |
. . . . . . 7
| |
| 28 | orcom 376 |
. . . . . . 7
| |
| 29 | 26, 27, 28 | 3bitr4i 268 |
. . . . . 6
|
| 30 | ordir 835 |
. . . . . 6
| |
| 31 | 29, 30 | bitr3i 242 |
. . . . 5
|
| 32 | 16, 31 | anbi12i 678 |
. . . 4
|
| 33 | 1, 32 | bitri 240 |
. . 3
|
| 34 | df-3or 935 |
. . 3
| |
| 35 | anandir 802 |
. . 3
| |
| 36 | 33, 34, 35 | 3bitr4i 268 |
. 2
|
| 37 | cador 1391 |
. 2
| |
| 38 | df-3an 936 |
. 2
| |
| 39 | 36, 37, 38 | 3bitr4i 268 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-xor 1305 df-cad 1381 |
| This theorem is referenced by: cadnot 1394 |
| Copyright terms: Public domain | W3C validator |