NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  cadan Unicode version

Theorem cadan 1392
Description: Write the adder carry in conjunctive normal form. (Contributed by Mario Carneiro, 4-Sep-2016.)
Assertion
Ref Expression
cadan cadd

Proof of Theorem cadan
StepHypRef Expression
1 ordi 834 . . . 4
2 ordir 835 . . . . . 6
3 simpr 447 . . . . . . . . . . 11
43con3i 127 . . . . . . . . . 10
5 biorf 394 . . . . . . . . . 10
64, 5syl 15 . . . . . . . . 9
76pm5.74i 236 . . . . . . . 8
8 df-or 359 . . . . . . . 8
9 df-or 359 . . . . . . . 8
107, 8, 93bitr4i 268 . . . . . . 7
11 orcom 376 . . . . . . 7
12 orcom 376 . . . . . . 7
1310, 11, 123bitr4i 268 . . . . . 6
14 orcom 376 . . . . . . 7
1514anbi2i 675 . . . . . 6
162, 13, 153bitr3i 266 . . . . 5
17 simpr 447 . . . . . . . . . . 11
1817con3i 127 . . . . . . . . . 10
19 biorf 394 . . . . . . . . . . 11
20 orcom 376 . . . . . . . . . . 11
2119, 20syl6bb 252 . . . . . . . . . 10
2218, 21syl 15 . . . . . . . . 9
2322pm5.74i 236 . . . . . . . 8
24 df-or 359 . . . . . . . 8
25 df-or 359 . . . . . . . 8
2623, 24, 253bitr4i 268 . . . . . . 7
27 orcom 376 . . . . . . 7
28 orcom 376 . . . . . . 7
2926, 27, 283bitr4i 268 . . . . . 6
30 ordir 835 . . . . . 6
3129, 30bitr3i 242 . . . . 5
3216, 31anbi12i 678 . . . 4
331, 32bitri 240 . . 3
34 df-3or 935 . . 3
35 anandir 802 . . 3
3633, 34, 353bitr4i 268 . 2
37 cador 1391 . 2 cadd
38 df-3an 936 . 2
3936, 37, 383bitr4i 268 1 cadd
Colors of variables: wff setvar class
Syntax hints:   wn 3   wi 4   wb 176   wo 357   wa 358   w3o 933   w3a 934  caddwcad 1379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-xor 1305  df-cad 1381
This theorem is referenced by:  cadnot  1394
  Copyright terms: Public domain W3C validator