New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cadan | Unicode version |
Description: Write the adder carry in conjunctive normal form. (Contributed by Mario Carneiro, 4-Sep-2016.) |
Ref | Expression |
---|---|
cadan | cadd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordi 834 | . . . 4 | |
2 | ordir 835 | . . . . . 6 | |
3 | simpr 447 | . . . . . . . . . . 11 | |
4 | 3 | con3i 127 | . . . . . . . . . 10 |
5 | biorf 394 | . . . . . . . . . 10 | |
6 | 4, 5 | syl 15 | . . . . . . . . 9 |
7 | 6 | pm5.74i 236 | . . . . . . . 8 |
8 | df-or 359 | . . . . . . . 8 | |
9 | df-or 359 | . . . . . . . 8 | |
10 | 7, 8, 9 | 3bitr4i 268 | . . . . . . 7 |
11 | orcom 376 | . . . . . . 7 | |
12 | orcom 376 | . . . . . . 7 | |
13 | 10, 11, 12 | 3bitr4i 268 | . . . . . 6 |
14 | orcom 376 | . . . . . . 7 | |
15 | 14 | anbi2i 675 | . . . . . 6 |
16 | 2, 13, 15 | 3bitr3i 266 | . . . . 5 |
17 | simpr 447 | . . . . . . . . . . 11 | |
18 | 17 | con3i 127 | . . . . . . . . . 10 |
19 | biorf 394 | . . . . . . . . . . 11 | |
20 | orcom 376 | . . . . . . . . . . 11 | |
21 | 19, 20 | syl6bb 252 | . . . . . . . . . 10 |
22 | 18, 21 | syl 15 | . . . . . . . . 9 |
23 | 22 | pm5.74i 236 | . . . . . . . 8 |
24 | df-or 359 | . . . . . . . 8 | |
25 | df-or 359 | . . . . . . . 8 | |
26 | 23, 24, 25 | 3bitr4i 268 | . . . . . . 7 |
27 | orcom 376 | . . . . . . 7 | |
28 | orcom 376 | . . . . . . 7 | |
29 | 26, 27, 28 | 3bitr4i 268 | . . . . . 6 |
30 | ordir 835 | . . . . . 6 | |
31 | 29, 30 | bitr3i 242 | . . . . 5 |
32 | 16, 31 | anbi12i 678 | . . . 4 |
33 | 1, 32 | bitri 240 | . . 3 |
34 | df-3or 935 | . . 3 | |
35 | anandir 802 | . . 3 | |
36 | 33, 34, 35 | 3bitr4i 268 | . 2 |
37 | cador 1391 | . 2 cadd | |
38 | df-3an 936 | . 2 | |
39 | 36, 37, 38 | 3bitr4i 268 | 1 cadd |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wi 4 wb 176 wo 357 wa 358 w3o 933 w3a 934 caddwcad 1379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-xor 1305 df-cad 1381 |
This theorem is referenced by: cadnot 1394 |
Copyright terms: Public domain | W3C validator |